期刊文献+

无网格法中一种新型权函数研究和应用 被引量:1

Study of a new weight function in the meshless method and its application
在线阅读 下载PDF
导出
摘要 文章基于概率论和误差理论,提出了一种新的权函数——正态权函数(Normal weight function),从理论和实践上证明了它的实用、可行性。通过一维杆和二维梁实例,把正态权函数与现有流行的权函数进行比较,说明它是一种受影响域半径变化的影响较小、高效实用的权函数。最后给出了正态权函数影响域半径的确定规则。 How to determine the radius of the influence domain reasonably and exactly and which type of weight function is suitable to numerical calculation are the two difficult problems in the research on meshless methods. This paper presents a new weight function, named the normal weight function, which is based on the probability theory and the error theory. Its feasibility is proved theoretically. The numerical simulation results of a one-dimensional bar and a two-dimensional beam show that the normal weight function possesses good properties for meshless calculation, such as high accuracy and good stability. The rules for determining the radius of the influence domain for the normal weight function are discussed.
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第11期1489-1493,共5页 Journal of Hefei University of Technology:Natural Science
关键词 无网格法 移动最小二乘法 权函数 影响域半径 正态权函数 meshless method moving least-square method weight function radius of the influencedomain normal weight function
  • 相关文献

参考文献12

  • 1Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments[J]. Comput Methods Appl Mech Engrg, 1996,139:3--47.
  • 2Belytschko T, Liu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994,37 : 229-- 256.
  • 3Monaghan J J. An introduction to SPH[J]. Comput Phys Comm, 1988, 48:89--96.
  • 4Liu W K, Jun S. Reproducing kernel particle methods for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1995,38 : 1655-- 1679.
  • 5Zhu T, Zhang J O, Atluri S N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach [J]. Comput Mech, 1998,21:223--235.
  • 6Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Comput. Mech, 1998,22 : 117-- 127.
  • 7娄路亮,曾攀.双材料界面裂纹应力强度因子的无网格分析[J].航空材料学报,2002,22(4):31-35. 被引量:37
  • 8Onate E, ldelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics: applications to convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering. 1996, 39:3839--3866.
  • 9张雄,刘岩.无网格法[M].北京:清华大学出版社,2005 1-94.
  • 10杨玉英,李晶.无网格Galerkin方法中权函数的研究[J].塑性工程学报,2005,12(4):5-9. 被引量:12

二级参考文献32

  • 1周维垣,杨若琼,剡公瑞.流形元法及其在工程中的应用[J].岩石力学与工程学报,1996,15(3):211-218. 被引量:38
  • 2Duarte C A, Oden J T. Hp clouds: a h-p meshless method. Numerical methods for Partical Differential Equations. 1996, 12:673~705.
  • 3Liu W K, Jun S, Adee J, et al. Reproducing Kernel Particle methods. Int. J. Numer. Methods. Engrg.1995, 38, 1655-1679.
  • 4Belytschko T, Krongauz Y, Organ D, et al. Meshlee methods: An overview and recent developments.Comput. Methods Appl. Mech. Engrg. , 1996, 139,3-47.
  • 5T Belytschko, Y Y Lu, L Gu, et al. Element-free Galerkin methods for static and dynamoic fracture.Int. J. Solids. Structures, 1995, 32 (17): 2547-2570.
  • 6Lucy L B. A numerical approach to the testing of the fission hypothesis. The Astron. J. 1977, 8 (12):1013-1024.
  • 7B Nayroles, G Touzot, P Villon. Generalizing the finite element method., diffuse approximation and diffuse elements. Comput. Mech. 1992, (10): 307-318.
  • 8Belytschko T, Lu Y Y, Gu L. Element free Galerkin methods. Int. J. Numer. Methods. 1994, 37: 229-256.
  • 9Melenk J M, Babuvka I. The partition of unity finite element method: basic theory and applications, Comput. Methods appl. Mech. Engrg. 1996, 139, 289-314.
  • 10赵松年 熊小芸.小波变换与子波分析[M].北京:电子工业出版社,1992..

共引文献58

同被引文献5

  • 1Belytschko T, Lu YY, Gu L, Tabbara M. Element-flee Galerkin methods for static and dynamic fracture[J]. International Journal for Solids Structures, 1995, 32(17) : 2547 - 2570.
  • 2Belytschko T, Gu L, Lu YY. Fracture and crack growth by element-free Galerkin methods. Modelling and in Simulation [J]. Material Science and Engineering, 1994, 2 : 519 - 534.
  • 3Krongauz Y, Belytschko T1. Enforcement of essential boundary conditions in meshless approximations using finite elements [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 131: 133- 1451.
  • 4李卧东,王元汉,陈晓波.模拟裂纹传播的新方法──无网格伽辽金法[J].岩土力学,2001,22(1):33-36. 被引量:10
  • 5袁振,李子然,吴长春.无网格法模拟复合型疲劳裂纹的扩展[J].工程力学,2002,19(1):25-28. 被引量:13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部