期刊文献+

无网格Galerkin法的理论进展及其应用研究 被引量:3

Theoretical progress and application research of element-free Galerkin method
在线阅读 下载PDF
导出
摘要 无网格Galerkin(Element-free Galerkin,EFG)法是无网格方法中应用比较广泛的一种,在介绍其基本特点和原理的基础上,对其移动最小二乘近似过程中涉及到的基函数、权函数的选择、影响域半径的确定等方面取得的新进展进行了介绍.并针对本征边界条件的满足,离散和积分方案的实施,自适应分析及误差分析的应用等一系列相关问题的研究现状及取得的成果进行了详细阐述.同时以受均布载荷的悬臂梁为例,编制了EFG平面弹性程序,验证了EFG法的可行性.最后针对EFG法存在的不足,提出了几个研究方向. Element-free Galerkin (EFG) method is one of the popularly used meshless methods. Based on the introduction of EFG's features and scientific fundamentals, current research progresses of the basis function, weight function, radius of influence domain, aspects associated with the moving least square approximation, are discussed in detail. Besides, the latest situation and achievements about the enforcement of essential boundary condition, discretization and integration are illustrated. The applications of adaptive process and error analysis method in EFG are also presented. Furthermore, a slender cantilever beam with uniformly distributed pressure is adopted as a numerical example to verify the effectiveness of EFG method. Finally, for the disadvantages of EFG method several research tendencies are proposed.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2007年第2期186-191,共6页 Materials Science and Technology
关键词 无网格GALERKIN法 移动最小二乘 权函数 影响域半径 本征边界条件 自适应 误差分析 Element-free Galerkin (EFG) method Moving Least Square (MLS) weight function radius ofinfluence domain essential boundary condition adaptive error analysis
  • 相关文献

参考文献37

  • 1GINGOLD R A,MONAGHAN J J.Smoothed particle hydrodynamics:theory and applications to non-spherical stars[J].Mon Not Roy Astron Soc,1977,18:375-389.
  • 2NAYROLES B,TOUZOT G,VILLON P.Generalizing the finite element method:diffuse approximation and diffuse elements[J].Comput Mech,1992,10:307 -318.
  • 3BELYTSCHKO T,LU Y Y,GU L.Element free Galerkin methods[J].Int J Numer Methods,1994,37:229-256.
  • 4LIU W K,JUN S,ADEE J,et al.Reproducing Kernel Particle methods[J].Int J Numer Methods Engrg,1995,38:1655-1679.
  • 5龙述尧,陈莘莘.关于无单元法中的插值基函数选取的探讨[J].湖南大学学报(自然科学版),2002,29(5):9-13. 被引量:6
  • 6LU Y Y,BELYTSCHKO T,GU L.A new implementation of the element free Galerkin method[J].Comput Methods Appl Mech Engrg,1994,113:397 -414.
  • 7刘振华,刘建新,庞承宗.静电场无网格方法中权函数的研究[J].华北电力大学学报(自然科学版),2003,30(1):18-21. 被引量:6
  • 8BELYTSCHKO T,KRONGAUZ Y,ORGAN D,et al.Meshlee methods:An overview and recent developments[J].Comput Methods Appl Mech Engrg,1996,39:3-47.
  • 9张延军,张晓炜.无网格伽辽金法应用的参数选择及内部边界处理[J].工程地质学报,2001,9(3):321-325. 被引量:9
  • 10BEISSEL S,BELYTSCHKO T.Nodal integration of the element free Galerkin method[J].Computer Methods in Applied Mechanics and Engineering,1996,139:49-74.

二级参考文献61

  • 1胡忠.塑性有限元模拟技术的最新进展[J].塑性工程学报,1994,1(3):3-13. 被引量:23
  • 2石根华 裴觉民(译).数值流形方法与非连续变形分析[M].北京:清华大学出版社,1997..
  • 3Kardestuncer H 诸德超.有限元法手册[M].北京:科学出版社,1996.769-778.
  • 4周大隽.锻压技术计算图册[M].北京:机械工业出版社,1994..
  • 5庞作会.[D].武汉:中国科学院岩土力学研究所,1998.
  • 6[1]Atluri S N,Zhu T. A new meshless local petrov-galerkin approach to nonlinear problems in computer modeling and simulation [J]. Computer Modeling and Simulation inEngineering, 1998,3:187- 196.
  • 7[2]Belytschko T, Liu Y Y, Gu L. Element-free Galerking methods[J]. Int J Numer Meth Engrg,1994,37:229-256.
  • 8[3]Liu W K, Jun S, Zhang Y. Reproducing kernel particle method[J]. Int J Numer Meth Fluids, 1995,21: 903- 931.
  • 9[4]Liu W K,Jun S. Multiple scale reproducing kernel particle method for large deformation problems [J]. Int J Numer Meth Engrg,1998,41:1339-1362.
  • 10[5]Li G Y,Tan M J,Liew K M. Sheet forming analysis based on improved contact searching algorithm and simple approach for contact force evaluation [J]. J Engrg Mate Tech,ASME,2001,123:119-124.

共引文献113

同被引文献22

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部