摘要
无网格Galerkin(Element-free Galerkin,EFG)法是无网格方法中应用比较广泛的一种,在介绍其基本特点和原理的基础上,对其移动最小二乘近似过程中涉及到的基函数、权函数的选择、影响域半径的确定等方面取得的新进展进行了介绍.并针对本征边界条件的满足,离散和积分方案的实施,自适应分析及误差分析的应用等一系列相关问题的研究现状及取得的成果进行了详细阐述.同时以受均布载荷的悬臂梁为例,编制了EFG平面弹性程序,验证了EFG法的可行性.最后针对EFG法存在的不足,提出了几个研究方向.
Element-free Galerkin (EFG) method is one of the popularly used meshless methods. Based on the introduction of EFG's features and scientific fundamentals, current research progresses of the basis function, weight function, radius of influence domain, aspects associated with the moving least square approximation, are discussed in detail. Besides, the latest situation and achievements about the enforcement of essential boundary condition, discretization and integration are illustrated. The applications of adaptive process and error analysis method in EFG are also presented. Furthermore, a slender cantilever beam with uniformly distributed pressure is adopted as a numerical example to verify the effectiveness of EFG method. Finally, for the disadvantages of EFG method several research tendencies are proposed.
出处
《材料科学与工艺》
EI
CAS
CSCD
北大核心
2007年第2期186-191,共6页
Materials Science and Technology
关键词
无网格GALERKIN法
移动最小二乘
权函数
影响域半径
本征边界条件
自适应
误差分析
Element-free Galerkin (EFG) method
Moving Least Square (MLS)
weight function
radius ofinfluence domain
essential boundary condition
adaptive
error analysis