期刊文献+

基于最小二乘支持向量机的城市客运量预测模型 被引量:10

Prediction Model of Urban Passenger Transport Based on Least Square Support Vector Machine
在线阅读 下载PDF
导出
摘要 针对城市公路客运量预测中存在的非线性、复杂性和不确定性,提出了一种基于最小二乘支持向量机的城市客运量预测模型。结合西安市历年城市客运量数据,编程实现该预测模型,仿真结果表明了该预测模型的有效性。 With consideration of the non-linearity, complexity, and uncertainty of the prediction problem in urban passenger transport, a prediction model of urban passenger transport based on least square support vector machine(LSSVM) was proposed. Based on the volume of the urban passenger transport in Xi'an over years, the model was calculated and simulated through programming. The simulation results indicate that this prediction model is effective.
出处 《交通与计算机》 2007年第5期50-53,共4页 Computer and Communications
基金 广东省科技厅工业攻关计划项目资助(批准号:2006-B14901005)
关键词 最小二乘支持向量机 城市客运量预测 核函数 least square support vector machine urban passenger transport prediction kernel function
  • 相关文献

参考文献9

  • 1王生昌,白韶波,张慧.公路客运量预测方法的比较[J].长安大学学报(自然科学版),2005,25(5):83-85. 被引量:34
  • 2李学伟,张江.基于遗传算法的智能交通运量预测方法[J].交通运输系统工程与信息,2004,4(1):18-22. 被引量:7
  • 3李驰宇,李远富,梁东.基于人工神经网络的交通运量预测[J].交通标准化,2005,33(8):130-132. 被引量:10
  • 4Vapnik V N. The Nature of Statistical Learning Theroy. New York : Springer, 1995
  • 5Vapnik V N. An overview of statistical learning theory. IEEE Trans on Neural Networks, 1999, 10(5):988-999
  • 6Christopher J, Burges C. A tutorial on support vector machines for pattern reeognltion. Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167
  • 7李国正 王蒙 曾华军译.支持向量机导论[M].北京:电子工业出版社,2004-03..
  • 8Suykens J A K,Vandewalle J. Least square support vector machine classifiers. Neural Processing Letters, 1999,9 (3):293-300
  • 9Suykens J A K, Vandewalle J. Recurent least squares support veetor maehines. IEEE Transactions on Circuits and SysternI, 2000, 47 (7):1 109-1 114

二级参考文献9

共引文献56

同被引文献64

引证文献10

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部