期刊文献+

圆锥泡声致发光气泡动力学过程的理论分析 被引量:1

THEORETICAL STUDY ON DYNAMIC PROCESS OF CONICAL BUBBLE SONOLUMINESCENCE
在线阅读 下载PDF
导出
摘要 在绝热压缩模型的基础上,详细讨论了圆锥泡声致发光中气泡运动的动力学过程,得到了气泡塌陷速度方程、气泡内压强方程以及温度方程.结果显示在气泡进入圆锥腔的初始阶段,气泡的塌陷速度随着压缩半径的不断减小近似线性地增加;然后随着压缩半径的进一步减小,气泡塌陷的加速度逐渐减小;当气泡塌陷速度达到最大值后,随着气泡压缩半径的进一步减小,塌陷速度迅速下降至零.在假设初始气压为1000Pa的基础上,理论分析得到气泡的最高塌陷速度可以达到5.8m/s;气泡的最小压缩半径可以达到1.37cm,相应的气泡内极限压强超过4.5×10^5Pa,极限温度超过3150K,而液流能够提供给气泡的能量达到0.02J.理论推导得到的结果可以比较好地用来解释实验中的现象.最后分析得到气泡内的初始气压对气泡所能达到的极端条件有着重要的影响. The dynamic process of conical bubble sonoluminescence is discussed based on the adiabatic process. The equations for the velocity of bubble collapse, the pressure and temperature within the bubble are derived. Results show that the velocity of collapsing bubble increases with the decrease of the radius of collapsing bubble first in an approximately linear manner, then the maximal velocity of collapsing bubble is reached, subsequently, the velocity of collapsing bubble quickly decreases. Assuming that the initial pressure is equal to 1000 Pa, the maximal value of the velocity of bubble collapse is 5.8m/s, the minimum radius of the bubble is 1.37cm, then the huge pressure of 4.5 ×10^5 Pa, the collapsing temperature of above 37000K, and the maximal energy of about 0.02 J can be achieved. The equations obtained in this paper could explain the phenomena of experiment. Finally, results show that the initial pressure within the bubble has important effects on the final extreme conditions.
出处 《力学学报》 EI CSCD 北大核心 2007年第6期727-731,共5页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金(20273077) 河北大学校内青年基金(2005Q06)资助项目.~~
关键词 圆锥泡声致发光 塌陷速度方程 绝热压缩 压缩半径 压强 conical bubble sonoluminescence, velocity collapsing bubble, pressure of collapsing bubble, adiabatic collapse, radius of
  • 相关文献

参考文献3

二级参考文献52

  • 1Barber, B P, Putterman S J and Weninger K R 1991 Nature(London) 352.
  • 2Gompf B, Gunther R, Nick G, Pecha R and Eisenmenger W 1997 Phys Rev Lett . 79 1405.
  • 3Hiller R,Puttennan S J and Barber B P 1992 Phys Rev Lett. 69 1182.
  • 4Hiller R,Weninger K,Putterman S J and Barber B P 1994 Science 266 248.
  • 5Hiller R A ,Putterman S J and Weninger K R 1998 Phys Rev Lett.80 1090.
  • 6Matula T J, Roy R A, Mourad P D and Suslick K S 1995 Phys Rev Lett . 75 2602.
  • 7Chen W Z and Wei R J 1999 Chin Phys 8 255.
  • 8Didenko Y T, McNamara W B and Suslick K S 2000 Nature(London) 407 877.
  • 9Lu M J, Chen W Z, Shen J H, Wang W J and Li S Q 2002 Chinese Phys . Letter 19 864.
  • 10Leighton T G,Ho W L and Flaxman R 1997 Ultrasonics 35 399.

共引文献7

同被引文献1

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部