期刊文献+

自适应小波降噪在轴承故障诊断中的应用 被引量:14

Application of Adaptive Wavelet Denoising on Bearing Fault Diagnosis
在线阅读 下载PDF
导出
摘要 针对轴承振动的非平稳性特点和频谱成分的混杂性,提出了基于小波的信号自适应阈值降噪法。自适应阈值降噪法首先对信号进行离散正交小波多层分解,对分解后的各层细节系数中模小于某阈值的系数进行处理,然后将处理完的小波系数再进行反变换,重构出经过降噪后的信号。用仿真信号进行降噪处理,结果表明:通过选择合适的小波基和阈值选择规则,可以实现信号的完美降噪;实测轴承振动信号用小波降噪方法进行预处理,提高了信噪比,进一步作频谱分析得到了故障特征信息,为诊断决策提供了依据。 For the nonstationarity and spectrum chaos of the bearing vibration signal, threshold denoising based on wavelet decomposition was put forward. In this method, signal was decomposed into multi-layer, processing the detail coefficients according as the threshold, then reconstructing to get the denoised signal by the wavelet coefficients. The simulated signal was denoised, the result demonstrated that fine denoising could be carried out through selecting suitable wavelet and threshold ruler. The denoising method was employed to preprocess the real vibration signal of bearing, improving the signal noise rate. Fault characteristic was gained by the following frequency analysis, it approved foundation of diagnosis decision-making.
出处 《噪声与振动控制》 CSCD 北大核心 2007年第5期100-103,106,共5页 Noise and Vibration Control
关键词 振动与波 非平稳性 小波分解 阈值选择 信号降噪 特征提取 vibration and wave nonstationarity wavelet decomposition threshold selection signal denoising characteristic extraction
  • 相关文献

参考文献6

二级参考文献16

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2崔锦泰,小波分析导论,1995年
  • 3胡昌华 张军波 等.基于MATLAB的系统分析与设计—小波分析[M].西安:西安电子科技大学出版社,2000..
  • 4胡昌华 张军波 夏军 等.基于MATLAB的系统分析与设计[M].陕西:西安电子科技大学出版社,1999.1-22.
  • 5彭玉华.小波变换与工程应用[M].北京:科学出版社,2000.115-117.
  • 6Lark R M, Kaffka S R, Corwin D L. Multiresolution analysis of data on electrical conductivity of soil using wavelets[J]. Journal of Hydrology, 2003,272: 276-290.
  • 7Corso G, Kuhn P S, Lucena L S, et al. Seismic ground roll time-frequency filtering using the gaussian wavelet transform[J]. Physica A, 2003,318: 551-561.
  • 8Pesquet-Popescu B. Statistical properties of the wavelet decomposition of certain non-Gaussian self-similar processes[J]. Signal Processing, 1999,75: 303-322.
  • 9Ingrid Daubechies. Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics,1992.
  • 10Donoho D L. De-Noising Via Soft-Thresholding. IEEE Trans on Inform Theory, 1995, 41(3):613~627.

共引文献84

同被引文献109

引证文献14

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部