期刊文献+

基于小波分析的低速重载设备故障诊断 被引量:14

RESEARCH ON FAULT DIAGNOSIS TECHNOLOGY OF LOW SPEED AND HEAVY DUTY EQUIPMENTS BASED ON WAVELET ANALYSIS
在线阅读 下载PDF
导出
摘要 低速重载设备突发故障难于识别,一旦发生,损失巨大。振动监测技术虽可以作为设备维护的重要手段, 但常规的频谱分析无法准确提取低速轴上的故障特征。对实时监测的振动数据,采用小波分解技术可以获得必要 的低频段信息。某个时段内的信号经小波变换后所定义的小波分层突变系数,可以作为判别低转频微冲击故障隐 患的特征值,而且该系数趋势图还可有效刻画出故障部位的劣化过程:对同一组监测数据,分别采用细化谱技术 和小波分解+FFT的复合信号处理技术进行比较分析,结果表明,由于FFT分析的局限性,细化谱无法准确识别 出故障原因及部位,而后者采用复合信号处理方法提取的故障特征频率对应的振幅变化剧烈得多,此法有助于低 速重载设备早期故障的准确识别。 The sudden fault on the low speed and heavy duty equipments are very difficult to recognize and it can bring about great loss. Though the equipments can be maintained by the vibration monitoring technology, the fault information on the low speed shaft can't be easily picked through the frequency spectrum analysis. The necessary information on the low frequency range can be obtained by wavelet analysis on the monitoring data. The sultation coefficient of wavelet decomposition on the vibration signal in some time range can be regarded as the characteristic value to judge the fault. Furthermore, the cofficients can capture the developing process of the fault. For the same series monitoring data, the refinable spectrum analysis and FFT analysis compounding wavelet decomposition are both used to complete the comparative research. The achievements show that the refinable spectrum method can't predict the fault reason and location. On the other hand, after the composite signal processing through wavelet analysis and FFT technique, the vibration amplitudes variation of the characteristic frequency of the hidden fault are very intense. As a result, it is very helpful to precisely recognize the early fault on the low speed and heavy duty equipments.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2005年第12期222-227,共6页 Journal of Mechanical Engineering
基金 北京市科委(H030330050110)北京工业大学博士科研启动基金(KZ0107200382 00138)资助项目。
关键词 低速重载 频谱分析 小波分析 Low-speed heavy-duty Spectrum analysisWavelet analysis
  • 相关文献

参考文献9

二级参考文献34

  • 1陈志奎,徐铭陶,秦树人,汤宝平.工程信号中的小波采样与小波分析[J].重庆大学学报(自然科学版),1996,19(5):1-9. 被引量:11
  • 2崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 3彭玉华.小波变换与工程应用[M].北京:科学出版社,2000..
  • 4[1]Newland D E. An introduction to random vibrations,spectral and wavelet analysis. England: Longman Scientific & Technical, 1993. 236~320
  • 5[2]Strang G, Nguyen T. Wavelets and filter banks.Wellessley: Wellesley-Cambridge Press, 1996
  • 6[3]Priestley M B. Wavelet and time-dependent special analysis. Journal of Time Series Analysis, 1996,17 (1): 85~103
  • 7[4]Subba Rao T, Indukumar K C. Spectral and wavelet methods for the analysis of nonlinear and nonstationary time series. Journal of Franklin Institute, 1996, 333(B3) :425~452
  • 8[5]Truong Y K, Patil P. On the local property of wavelet estimators involving time series. Nonparametric Statistics 1996,(6):143~156
  • 9[6]Hammond J K. White P R. The analysis of non-stationary signals using time-frequency methods. Journal of Sound and Vibration, 1996,190(3):419~447
  • 10[7]Meyer Y. Wavelets and oprators. Cambridge: Cambridge Univ. Press, 1992

共引文献97

同被引文献87

引证文献14

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部