期刊文献+

汽油机过渡工况进气流量的神经网络预测研究 被引量:4

The Research on Neural Network Forecast of Gasoline Engine Intake Flow during Transient Conditions
在线阅读 下载PDF
导出
摘要 进气流量的精确测量是车用汽油机空燃比精确控制的基础,发动机工作在过渡工况时,因进气状态变化,空气流量传感器的滞后响应影响了过渡工况空燃比的控制精度。提出了一种基于汽油机过渡工况各种参数信息融合的过渡工况进气流量预测方法,分析了影响汽油机过渡工况进气流量的各种工况参数,提取了特征参数并建立了BP神经网络信息融合预测模型。对车用汽油机加减速工况试验数据进行仿真,研究结果表明,该方法能够准确实时地预测汽油机过渡工况的进气流量,同时能够消除空气流量传感器的滞后特性。 The precise measurement of intake flow is the basis of accurate control of air fuel ratio for gasoline engines. During transient conditions, the serious fluctuation of intake state and the lagging response of the airflow sensor seriously affect the control accuracy of air fuel ratio. A method of intake flow forecast under transient conditions based on information fusion of various parameters in gasoline engine is put forward, various operating parameters that influence intake flow during transient conditions are analyzed, characteristic parameters are also found and the forecasting model of information fusion based on BP neural network is established in the end. The model is trained and simulated by using test data in the acceleration and deceleration condition. The results show that this method can accurately and real-timely forecast the engine intake flow under transient condition and eliminate the lagging characteristic of the airflow sensor at the same time.
出处 《车用发动机》 北大核心 2007年第4期42-45,共4页 Vehicle Engine
基金 国家自然科学基金资助(50276005)
关键词 汽油机 过渡工况 进气流量 神经网络 预测 gasoline engine transient condition intake flow neural network forecast
  • 相关文献

参考文献4

二级参考文献5

共引文献8

同被引文献27

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部