期刊文献+

基于Si掺杂Sb2Te3薄膜的相变存储器研究 被引量:1

Study of Si-doped Sb_2Te_3 films for phase change memory
原文传递
导出
摘要 采用磁控三靶(Si,Sb及Te)共溅射法制备了Si掺杂Sb2Te3薄膜,作为对比,制备了Ge2Sb2Te5和Sb2Te3薄膜,并且采用微加工工艺制备了单元尺寸为10μm×10μm的存储器件原型来研究器件性能.研究表明,Si掺杂提高了Sb2Te3薄膜的晶化温度以及薄膜的晶态和非晶态电阻率,使得其非晶态与晶态电阻率之比达到106,提高了器件的电阻开/关比;同Ge2Sb2Te5薄膜相比,16at%Si掺杂Sb2Te3薄膜具有较低的熔点和更高的晶态电阻率,这有利于降低器件的RESET电流.研究还表明,采用16at%Si掺杂Sb2Te3薄膜作为存储介质的存储器器件原型具有记忆开关特性,可以在脉高3V、脉宽500ns的电脉冲下实现SET操作,在脉高4V、脉宽20ns的电脉冲下实现RESET操作,并能实现反复写/擦,而采用Ge2Sb2Te5薄膜的相同结构的器件不能实现RESET操作. Silicon doped Sb2Te3 films were deposited by three target (Si, Sb and Te) co-sputtering. For comparison, Ge2Sb2Te5 and Sb2Te3 films were also prepared. Memory cells (pore size = 10 μm x 10 μm) were fabricated by micro-fabrication to further study their storage performance. Results indicate that silicon doping increases the crystallization temperature. Meanwhile, silicon doping drastically enhances the resistivity ratio (high resistance state/low resistance state) to 10^6 by increasing both amorphous resistivity and crystal resistivity so as to further increasing the ON/OFF ratio of memory cell. Compared with Ge2Sb2Te5 film, 16at%Si-Sb2Te3 film has a higher crystalline resistivity and lower melting temperature, which are helpful to the reduction of RESET current. Memory cell with silicon doped Sb2 Te3 film poccesses memory storage characteristics, and it can be reversibly switched between the high resistance state (RESET status) and the low resistance state (SET status). The SET status can be triggered by electrical pulse of 3 V, 500 ns and it comes back to the RESET status when 4 V, 20 ns pulse is applied, while Ge2Sb2Tes cells, with the same structure can't be switched back to RESET state.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2007年第7期4224-4228,共5页 Acta Physica Sinica
基金 Silicon Storage Technology公司对本项目的经费支持.
关键词 相变存储器 硫系化合物 Si掺杂Sb2Te3 薄膜 SET/RESET转变 phase-change memory, chalcogenide, Si-doped Sb2 Te3 film, SET/RESET switching
  • 相关文献

参考文献15

  • 1Lai S 2003 IEEE IEDM Tech.Dig.3 255
  • 2Lai S,Lowrey T 2001 IEEE IEDM Tech.Dig.1 803
  • 3Maimon J,Spall E,Quinn R,Schunur S 2001 IEEE Aero.Conf.Proc.5 2289
  • 4Hrovano A,Lacaita A L,Benvenuti A,Pellizzur,Hudgens S,Bez R 2003 IEEE IEDM Tech.Dig.3 699
  • 5Tyson S,Wicker G,Lowrey T,Hudgcns S,Hunt K 2000 IEEE Aero.Conf.Proc.5 385
  • 6Bez R,Pirovano A 2004 Materials Seience in Semiconductor Processing 7 349
  • 7赖云锋,冯洁,乔保卫,凌云,林殷茵,汤庭鳌,蔡炳初,陈邦明.氮掺杂Ge_2Sb_2Te_5相变存储器的多态存储功能[J].物理学报,2006,55(8):4347-4352. 被引量:5
  • 8Qiao B W,Feng J,Lai Y F,Ling Y,Lin Y Y,Tang T A,Cai B C,Chen B 2006 Applied Surface Science 252 8404
  • 9Matsuzaki N,Kurotsuchi K,Matsui Y,Tonomura O,Yamamoto N,Fujisaki Y,Kitai N,Takemura R,Osada K,Hanzawa S,Moriya H,Iwasaki T,Kawahara T,Takaura N,Terao M,Matsuoka M,Moniwa M 2005 IEEE IEDM Tech.Dig.5 738
  • 10Yamada N,Ohno E,Nishiuchl K,Akahira N,Takao M 1991 J.Appl.Phys.69 2849

二级参考文献39

  • 1吴玉程.物理学报,1999,48:102-102.
  • 2Mimura A, Konishi N, Ono K, Hosokawa Y, Ono Y A, Suzuki T, Miyata K and Kawakami H 1989 IEEE Trans. ED 50 351
  • 3Matsuyama T, Tanaka M, Tsuda S, Nakano S and Kuwano Y 1993 Jpn. J. Appl. Phys. 32 3720
  • 4Tanabe H, Nakamura K, Nirata K, Yuda K and Okumura F 1994 NEC Res. Dev. 35 254
  • 5Kohno A, Sameshima T, Sano N, Sekiya M and Hara M 1995 IEEE Trans. ED 42 251
  • 6Sposili R S and Im J S 1996 Appl. Phys. Lett. 69 2864
  • 7Ishikawa K, Ozawa M, Oh C and Matsumura M 1998 Jpn. J. Appl. Phys. Part 1 37 731
  • 8Bergmann R B, Oswald G, Albrecht M and Gross V 1997 Sol. Energy Mater. Sol. Cells. 46 147
  • 9Matsuyama T, Terada N, Baba T, Sawada T, Tsuge S, Wakisaka K and Tsuda S 1996 J. Non-Cryst. Solids 198-200 940
  • 10Szekeres A, Gartner M, Vasiliu F, Marinor M and Beshkov G 1998 J.Non- Cryst. Solids 227-230 954

共引文献25

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部