期刊文献+

等通道转角挤压及后续退火处理对Fe-Mn阻尼合金的影响 被引量:2

Effects of Equal Channel Angular Pressing and Subsequent Annealing Treatment on Fe-Mn Damping Alloy
在线阅读 下载PDF
导出
摘要 利用JN-1型倒扭摆仪对比研究了Fe-Mn合金经等通道转角挤压(ECAP)及不同温度退火后的阻尼性能变化,利用光学显微镜和透射电镜观察分析了合金的微观组织。结果表明,合金经ECAP及较低温度(600℃)退火后,组织中存在大量高密度位错和明显的带状组织,阻碍阻尼源的运动,导致阻尼性能消失;随退火温度升高(700~800℃),高密度位错和带状组织逐步消失,ε马氏体数量较未ECAP的多且片层更细小,单位体积内界面面积增加,振动的阻尼源增多,故阻尼性能显著提高;当退火温度进一步升高时(900~1000℃),由于ε马氏体片有所长大,合金的阻尼性能出现下降趋势,但仍高于未ECAP状态。 The damping capacity of Fe-Mn alloy which was subjected to equal channel angular pressing (ECAP) and subsequent annealed at different temperatures was measured by reversal torsion device. The microstructure was observed using the optical microscope and transmission electronic microscope. The results show that after ECAP and annealing at low temperature (600 ℃ ), there are lots of high-density dislocations and obvious banded structures, which inhibit the slip of damping resources and result in the low damping capacity. With increasing annealing temperature (700-800 ℃ ), high-density dislocations and banded structures gradually disappear. The amount of ε martensite is larger than that of specimen without ECAP, and the martensite flakes are much refiner, The increasing interfaces per unit volume result in more damping resources on vibration, thus improve damping capacity remarkably. With further increasing annealing temperature (900-1 000 ℃ ), the martensite flakes grow up slightly, so the damping capacity of Fe-Mn alloy decreases, but it is still higher than that of specimen without ECAP.
出处 《铸造技术》 CAS 北大核心 2007年第6期800-803,共4页 Foundry Technology
基金 核燃料及材料国家级重点实验室基金(51481040203SC0102)
关键词 等通道转角挤压 Fe-Mn阻尼合金 阻尼性能 Equal channel angular pressing Fe-Mn damping alloy Damping capacity
  • 相关文献

参考文献8

二级参考文献27

  • 1刘效东,吴宝榕.铁磁性阻尼合金中磁畴运动的动态观察[J].钢铁研究学报,1993,5(1):45-48. 被引量:7
  • 2赵西成,王媛,王经涛.Q235钢C方式等径弯曲通道变形及组织研究[J].热加工工艺,2005,34(1):5-7. 被引量:7
  • 3杨留栓,杨根仓,周尧和.发展高阻尼材料的新思路[J].材料导报,1995,9(2):15-16. 被引量:7
  • 4Jee K K,Jang W Y,Baik S H,et al.Damping capacity in Fe-Mn base alloy[J].Scripta Materialia,1997,37(5):943-948.
  • 5Jee K K,ITO K,Shin M C.Damping capacity in Fe-27Mn-3.5Si alloy[J].ISIJ International,1994,34(4):912-916.
  • 6Jee K K,Jang W Y,Baik S H,et al.Damping mechanism and application of Fe-Mn base alloy[J].Materials Science and Engineering,1999,38(1):538-542.
  • 7Sato A,Masuya T,Morishita M,et al.Strengthening of Fe-Mn-Si based shape memory alloy by grain size refinement[J].Materials Science Forum,2000,327-328:223~226.
  • 8Otsuka H,Masuya T,Kubo H.Characteristics of Fe-28Mn-6Si-5Cr shape memory alloy produced by centrifugal casting[J].Materials Science Forum,2000,327-328:243~246.
  • 9Segal V M.Materials processing by simple shear[J].Materials Science and Engineering,1995,A197:157~164.
  • 10Mughrabi H,Hoppel H W,Kautz M.Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation[J].Scripta Materialia,2004,51(8):807~812.

共引文献22

同被引文献48

引证文献2

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部