摘要
在整环R的几何空间V(R)上,给出运动A的座标阵的规范形,研究了用初等二平延中的旋转和伸缩,分解运动A的构作方法.并指出:当detA=1时,只须用的旋转个数L=r(r-1)个,就足以串成运动A;当1≠detA∈R*时,用一个伸缩和L=r(r-1)个旋转,也足够地串成运动A,其中r=resA.
The regular form of coordinate matrix is given in the geometrie space of the Euclidring. Research is made on the constructmg approach to resolution of motion A by using, expansion & contraction within elementarg 2- transvections. It points out that when det A= 1, the number of resolution needed is L= r(r- 1), which is sufficent enough to form motion A When 1≠det A ∈ R^* , motion A can also be formed by using one expansion & contraction and a rotation of L=r(r-1) with r=res A.
出处
《大学数学》
北大核心
2007年第2期98-102,共5页
College Mathematics
基金
海南省教育厅自然科学基金项目(Hj200584)
琼州大学重点维持学科:基础数学
琼大[2005]27号
关键词
运动
初等二平延
旋转
伸缩
motion
the elementary two-plane extension
rotation
flexing