摘要
With the physical method of micro-gap gas discharge, OH. radicals were produced by the ionization of O2 in air and H2O in the gaseous state, in order to explore more effective method totreat the ship's ballast water. The surface morphology of Al2O3 dielectric layer was analysed using Atomic Force Microscopy (AFM), where the size of Al2O3 particles was in the range of 2 μm to 5 μm. At the same time, the biochemical effect of hydroxyl radicals on the introduced organisms and the quality of ship's ballast water were studied. The results indicate that the main reasons of cell death are lipid peroxide and damage of the antioxidant enzyme system in Catalase (CAT), Peroxidase (POD) and Superoxide dismutase (SOD). In addition, the quality of the ballast water was greatly improved.
With the physical method of micro-gap gas discharge, OH. radicals were produced by the ionization of O2 in air and H2O in the gaseous state, in order to explore more effective method totreat the ship's ballast water. The surface morphology of Al2O3 dielectric layer was analysed using Atomic Force Microscopy (AFM), where the size of Al2O3 particles was in the range of 2 μm to 5 μm. At the same time, the biochemical effect of hydroxyl radicals on the introduced organisms and the quality of ship's ballast water were studied. The results indicate that the main reasons of cell death are lipid peroxide and damage of the antioxidant enzyme system in Catalase (CAT), Peroxidase (POD) and Superoxide dismutase (SOD). In addition, the quality of the ballast water was greatly improved.
基金
supported by the Key Project of National Support Plan from Science and Technology Ministry of China (2006BAC11B06)
the Key Project of International Cooperation from the Ministry of Science and Technology of China (2005DFA20800)
the Support Plan of National New Century Excellent Youth of China (NCET-04-0286, -05-0398)
the Project of National Natural Science Foundation of China (No. 60371035)