摘要
本文讨论了用隐式Euler方法求解一类延迟量满足Lipschitz条件且Lipschitz常数小于1的非线性变延迟微分方程初值问题的收敛性.获得了带线性插值的隐式Euler方法的收敛性结果.
In this paper, the authors discusses the convergence of implicit Euler for nonlinear Delay Differential Equations (DDEs) with a variable delay that satisfies Lipschitz condition and the minimum Lipschitz constant L〈 1. When the implicit Euler methods applied to the aforementioned equations, they proves that the method with linear interpolation procedure is convergent.
出处
《数学理论与应用》
2007年第1期34-36,共3页
Mathematical Theory and Applications