摘要
逃逸时间算法是生成Julia集最常用的算法,论文针对非线性复映射f(z)=zm+c为迭代函数的情形进行讨论。首先,根据逃逸时间算法的基本原理给出相应的算法步骤;然后,对迭代函数f(z)=zm+c进行了详细研究,从而合理地确定了算法中需要控制的变量Rmax和B(Rmax:判断{fn(z0)}n∞=1有界与否的界限值;B:初始迭代点z0的取值范围)的取值,这样就大大地减少了迭代次数,从而提高了算法的运算效率。
The familiar algorithm of creating the Julia set is the Escape Time Algorithm.In allusion to the state that the nonlinear complex mapping f(z)=z^m+c is used as the iteration function,this paper firstly gives the corresponding algorithm-process according to the rationale of the escape time algorithm,then studies the iteration function f(z)=z^m+c detailedly.Finally,the controlling variables Rmax and B(Rmax:the limitation of justifying if {f^n (z0)}n=1^∞ is bounded;B:the range of the initial point z0) are made certain,therefore the number of iteration is reduced and the computing efficiency of the algorithm is improved too.
出处
《计算机工程与应用》
CSCD
北大核心
2007年第5期30-32,共3页
Computer Engineering and Applications
基金
国家自然科学基金(the National Natural Science Foundation of China under Grant No.50474052)
湖南省青年骨干教师基金资助