期刊文献+

Au(Ⅰ)电荷转移配合物光谱性质的从头算研究 被引量:2

Ab initio Studies on Spectroscopic Properties of Au(Ⅰ) Charge-transfer Complexes
在线阅读 下载PDF
导出
摘要 过渡金属电荷转移配合物的电荷分离是光能转化为电能的光物理过程,与配合物的电子结构密切相关.采用从头算方法探索了双核Au(I)配合物,cis-[Au2(SHCH2PH2)2]^2+(1),cis-[Au2(SHCH2S)2](2)和cis-[Au2(PH2CH2S)2](3)的电荷转移性质.采用MP2计算得到基态的Au(I)-Au(I)距离分别为0.2972,0.2888和0.2903nm,表明Au(I)之间存在弱吸引作用;电子激发使得配合物2和3的金属间的距离缩短了约0.016nm,而配合物1仅增长了0.002nm.CIS方法预测配合物1~3的^3A激发态分别产生383.463和422nm最低能发射,具有金属中心(Metal-centered,MC)跃迁和分子内电荷转移(Intrarnolecular Charge Transfer,ICT)的混合性质. The process of charge separation of transition metal charge-transfer complexes involves the conversion of photo-energy into electrical energy, closely related to their electronic structures. We explored the charge-transfer properties of binuclear Au(I) complexes, c/s-[Au2(SHCH2PH2)2]^2+(1), c/s- [ Au2 ( SHCH2 S)2 ] (2) and c/s- [ Au2 ( PH2 CH2 S)2 ] ( 3 ), using ab initio methods. Their Au ( I ) -Au ( I ) distances in the ground states at the MP2 level are 0.2972, 0.2888 and 0.2903 nm, respectively, indicating the weak attraction between the two Au atoms. Upon excitation, those of complexes 2 and 3 are shortened by ca. 0. 016 nm whereas that of complex 1 only elongates ca. 0.002 nm. CIS calculations predict that the triplet excited states of complexes 1-3 give rise to 383,463 and 422 nm lowest-energy emissions, respectively. These emissions are attributable to the metal-centered (MC) transition mixed with the intramolecular charge transfer (ICT), which significantly differs from the cases in the previous studied on [ Au2 ( SHCH2 SH)2 ]^2 +, trans- [ Au2 ( SHCH2 PH2 )2 ]^2 + and [ Au2 ( PH2 CH2 PH2 )2 ]^2 +
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2007年第2期330-333,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20573042 20671032) 黑龙江省自然科学基金(批准号:B200601) 黑龙江大学杰出青年基金(2007)资助
关键词 Au(I)配合物 电荷转移 激发态 从头计算 Au( I ) complexes Charge transfer Excited state Ab initio calculations
  • 相关文献

参考文献14

  • 1McCusker J. K.. Acc. Chem. Res. [J], 2003, 36:876-887.
  • 2Kuciauskas D. , Monat J. E. , Villahermosa R.. J. Phys. Chem. B[J], 2002, 106:9347-9358.
  • 3Barone V. , Fabrizi de Biani F. , Ruiz E. , et al.. J. Am. Chem. Soc. [J],2001, 123:10742-10743.
  • 4潘清江,张红星.双核Au(Ⅰ)配合物[Y^+]_2[Au(i-mnt)]_2(Y^+=[n-Bu_4N]+,K^+,[Ph_4As]^+)发光机制的从头计算研究[J].高等学校化学学报,2003,24(2):310-314. 被引量:6
  • 5King C. , Wang J. C., Khan M. N. I., et al.. Inorg. Chem.[J], 1989, 28 : 2145-2149.
  • 6Fu W. F. , Chan K. C. , Cheung K. K. , et al.. Chem. Eur. J. [J], 2001,7:4656-4664.
  • 7Che C. M. , Kwong H. L. , Yam V. W. W. , et al.. J. Chem. Soc. Chem. Commun. [J], 1989:885-886.
  • 8Che C. M. , Kwong H. L. , Poon C. K.. J. Chem. Soc. Dalton Trans. [J], 1990:3215-3219.
  • 9Jones W. B. , Yuan J. , Narayanaswamy R. , et al.. Inorg. Chem. [J], 1995, 34:1996-2001.
  • 10Narayanaswamy R. , Young M. , Parkhurst A. E. , et al.. Inorg. Chem. [J], 1993, 32:2506-2517.

二级参考文献1

共引文献5

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部