期刊文献+

基于分形与支持向量回归的动力装置运行状态预测模型 被引量:2

An Operational Condition Forecasting Model for Power Devices Based on Fractal & Support Vector Regression
在线阅读 下载PDF
导出
摘要 分析了动力装置运行状态特点和预测要求,依据分形和支持向量回归理论,建立了基于分形与支持向量回归的状态趋势预测模型。其中,以振动烈度作为描述机组状态的特征数据来构建时间序列,对其进行相空间重构,根据最小嵌入维数来确定支持向量机输入节点数,采用支持向量回归算法对机组状态趋势进行预测。应用案例研究和实验对比分析的结果表明,研究的状态预测模型单步预测的平均相对误差为1.7881%,30步预测的平均相对误差为3.3983%,预测模型能较好地满足动力装置状态趋势预测要求。 The operational condition characteristics and the forecasting requirements for power devices were analyzed. A condition forecasting model based on the fractal theory and support vector regression method was presented. As a condition feature, vibration intensity was adopted to construct a time series. Minimum embedding dimension of the phase space was calculated by using phase space restructure technique, which was used to decide the input nodes of the support vector regression model. The forecasting ability and the validity of the model were studied and validated by means of application case and contrastive experiments. The research results demonstrate that relative mean error (RME) of the forecasting model is only 1. 7881% for one step forecasting and 3. 3983% for thirty steps forecasting; and the model can better meet the requirements of the condition forecasting for power devices.
作者 李岳 温熙森
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第1期22-25,共4页 China Mechanical Engineering
关键词 动力装置 分形 支持向量回归 时间序列 预测 power device fractal support vector regression time series forecasting
  • 相关文献

参考文献6

  • 1[美]瓦普尼克.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
  • 2Muller K R, Smola A J, Ratsch G, et al. Predicting Time Series with Support Vector Machines[M]. Sch B, Burges C J C, Smola A J. Advances in Kernel Methods-Support Vector Learning. Cambridge, MA:MIT Press, 1999.
  • 3Mukherjee O E, Girosi F. Nonlinear Prediction of Chaotic Time Serial Using Support Vector Machines [C]//Proceeding of IEEE NNSP' 97. Amelia Island, Florida, 1997 : 24-26.
  • 4Fraser A M, Swinney H L. Independent Coordinates from Mutual Information[J]. Phys. Rev. A, 1986, 33(2) : 1134-1140.
  • 5Cao L. Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series [J]. Physica D. ,1997,110(1/2):43-50.
  • 6Smola A J, Scholkopf B. A Tutorial on Support Vector Regression. Neuro COLT2 Technical Report Series, NC2-TR-1998-030[R]. London:University of London, 1998.

共引文献4

同被引文献18

  • 1曾声奎,Michael G.Pecht,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632. 被引量:290
  • 2Yu J. A Hybrid Feature Selection Scheme and Self - Or- ganizing Map Model for Machine Health Assessment [ J ]. Applied Soft Computing,2011,11 (5) :4 041 -4 054.
  • 3Dong M, Peng Y. Equipment PHM Using Non - Station- ary Segmental Hidden Semi - Markov Model [ J ]. Ro- botics and Computer - Integrated Manufacturing,2011, 27(3) : 581 -590.
  • 4Dnng M. A Novel Approaeh to Equipment Health Man- agement Based on Auto - Regressive Hidden Semi - Markov Model ( AR - HSMM) [ J]. Science in China Series F:lnformation Sciences,2008,51 (9) :1 291 - 1 304.
  • 5Plait J. Probabilities for Support Vector Machines [ C ]// Advances in Large Margin Classifiers. MIT Press,2000.
  • 6Si X S, Wang W, Hu C H, et al. Remaining Useful Life Estimation-A Review on the Statistical Data Driven Approaches [ J ]. European Journal of Operational Re- search, 2011 , 213(1) :1 - 14.
  • 7Kacprzynski G J, Sarlashkar A, Roemer M J. PreDicting Remaining Life by Tusing the Physics of Tailure Model- ing with Diagnostics [ J ]. Journal of Metal, 2004, 56 (3) :29 -35.
  • 8高昆,陈勇.飞机喷口滑油泵试验台液压系统的设计[J].机电产品开发与创新,2008,21(5):33-35. 被引量:5
  • 9苗学问,田喜明,洪杰.基于支持向量机的滚动轴承状态寿命模型[J].航空动力学报,2008,23(12):2190-2195. 被引量:9
  • 10潘玉娜,陈进.小波包-支持向量数据描述在轴承性能退化评估中的应用研究[J].振动与冲击,2009,28(4):164-167. 被引量:29

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部