期刊文献+

一种快速的频繁项集挖掘算法 被引量:1

An quick Algorithm of Frequent Itemsets Mining
在线阅读 下载PDF
导出
摘要 挖掘频繁项集是许多数据挖掘任务中的关键问题,也是关联规则挖掘算法,所以提高频繁项集的生成效率一直是近几年数据挖掘领域研究的热点之一,研究人员从不同的角度对算法进改进以提高算法的效率。该文提出了一种基于位表的频繁项集挖掘算法,用一种特别的数据结构———位表来压缩数据库以便快速产生候选集和支持计数,实验结果表明;此算法大大减少了遍历的时间,是性能比较好的算法。 Mining the frequent iternsets is a key problem in data mining. It is also the core of the algorithm for mining association rules. Therefore, improving the efficiency of discovering the algorithms from different perspectives has been the study focus. In the paper, an effective algorithm named as Bit- TableFI was presented. In the algorithms, a special data structure BitTable was used to compress database for quick candidate itemsets generation and support count. Experiment shows that the algorithm outperforms Apriori.
出处 《贵州工业大学学报(自然科学版)》 CAS 2006年第6期60-63,69,共5页 Journal of Guizhou University of Technology(Natural Science Edition)
关键词 数据挖掘 频繁项集 位表 data mining frequent itemsets bittable
  • 相关文献

参考文献3

  • 1D. Burdick, M. Calimlim, J, Flannick: a maximal frenquent itemset algorithm[J]. IEEE Transactions on Knowledge and Data Engineering. 2005,17(11): 1490 -1504.
  • 2J. W. HAN, J. Pei, Y. W. Yin: Mining frequent patterns without candidate generation: a frequent - pattrn tree approach [J]. Data Mining and Knowledge Discovery. 2004,8(1): 53 - 87.
  • 3张晓辉,何耀东,万家华,赵宏.关联规则发现的一种改进算法[J].东北大学学报(自然科学版),2001,22(4):401-404. 被引量:9

二级参考文献7

  • 1[1]Fayyad U M,Piatetsky-Shapiro G, Smyth P. From data mining to knowledge discovery:An overview[M]. Fayysd UM,Piatetsky-Shapiro G. Advances in Knowledge Discovery and Data Mining.1-35.
  • 2[2]Brachman R J,Fnand T. The process of knowledge discovery in d atabases:a human-centered approach[M]. Fayysd UM,Piatetsky-Shapiro G. Advanc es in Knowledge Discovery and Data Mining,37-58.
  • 3[3]Agrawal R,Imielinski T,Swami A. Mining association rules b etween sets of items in large database[A]. Proceedings of ACM SIGOD Conference on Management of Data[C]. Washington DC,1993.207-216.
  • 4[4]Agrawal R,Srikant R.Fast algorithms for mining association ru les in large databases[A]. Proceedings of the 20th International Conferenc e on Very Large Databases[C]. Santiago,Chile,1994.
  • 5[5]Houtsma M,Swami A.Set-oriented mining of association rules[ R]. Research Report RJ 9567. San Jose:IBM Almaden Research Center,1993.
  • 6[6]Strikant R,Agrawal R. Mining quantitative association rul es in large relational tables[A]. Proceedings of ACM SIGMOD Conference on Mana gement of Data(SIGMOD'96)[C]. Montreal,1996.1-12.
  • 7[7]Strikant R,Agrawal R.Mining generalized association rules[A ]. Proceedings of the 21st International Conference on Very Large Databases[C ]. Zurich,1995.407-419.

共引文献8

同被引文献8

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部