摘要
利用数值仿真的方法,对一类M ath ieu方程—欧拉动弯曲问题进行了研究.利用分岔图、相图等揭示了该系统经由倍周期分岔通向混沌的路径,另用时间响应图、相图和功率谱图来表明系统非线性状态.通过分岔图来选择适当的控制参数,利用耦合控制法、x|x|控制法和周期激振力控制法对欧拉动弯曲问题中的混沌行为进行了有效的控制.结果表明,通过这三种方法,都可以将系统的混沌运动控制到稳定的周期轨道。
By means of numerical simulations,the authors study bifurcations and chaotic behaviors in nonlinear Mathieu equation.The route to chaos is revealed by global bifurcation graph.Phase diagrams,time response and power spectram are used to show dynamic behavior of a system.By selecting proper control parameters according to the bifurcation graphs,the chaotic motions of the system can be successfully converted to the stable periodic orbits after three methods which are coupled control method,x|x| control method and periodic exciting force one are used to control effectively chaotic behaviors of Mathieu equation.
出处
《振动与冲击》
EI
CSCD
北大核心
2007年第1期35-37,41,共4页
Journal of Vibration and Shock