期刊文献+

利用小波变换和K均值聚类实现字幕区域分割 被引量:10

Segmentation of Caption Region Using Wavelet Transform and K-Mean Clustering
在线阅读 下载PDF
导出
摘要 提出一种字幕区域分割算法.首先对图像做小波变换和重构,并抽取字幕区域特征,再分块计算统计特征;然后对子块进行K均值聚类,实现字幕区域分割.与已有算法相比,该算法简单,不需要设置阈值.实验结果表明,即使在复杂背景下,对于字体、大小和位置都不确定的字幕,该算法仍具有良好的分割效果. An algorithm is proposed in the paper to segment caption region. By the algorithm, firstly, the caption features are extracted by wavelet transformation and reconstruction on the image, and secondly, statistic features are calculated block by block. At last blocks are classified by K-mean clustering method. In comparison with other algorithms, the algorithm is simpler and no requirement for setting any threshold. Experimental results show that the proposed algorithm performs well, even for captions with unknown font, size, and position.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第10期1508-1512,共5页 Journal of Computer-Aided Design & Computer Graphics
基金 江苏省自然科学基金(BK2004137)
关键词 字幕分割 小波变换 K均值聚类 caption extraction wavelet transform K-mean clustering
  • 相关文献

参考文献10

二级参考文献37

  • 1万雯.文旅融合背景下高职旅游管理专业人才培养模式研究[J].旅游纵览(下半月),2019(12):205-206. 被引量:10
  • 2[1]Y Wang, Z Liu, J Huang. Multimedia content analysis using audio and visual information[J]. IEEE Signal Processing Magazine, 2000, 17(6):12~36
  • 3[2]R Lienhart, F Stuber. Automatic text recognition in digital videos[A]. In: Proceedings of ACM Multimedia, Boston, 1996.11~20
  • 4[3]Zhong Yu, Zhang Hongjiang, Jain Anil K. Automatic caption localization in compressed video[J]. Pattern Analysis and Machine Intelligence, 2000, 22(4):385~392
  • 5[4]V Vapnik. The Nature of Statistical Learning Theory[M]. New York: Springer, 1995
  • 6[5]M Schmidt. Identifying speaker with support vector networks[A]. In: Proceedings of Interface'96, Sydney, 1996
  • 7[6]T Joachims. Text categorization with support vector machines: Learning with many relevant features[A]. In: Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, 1998.137~142
  • 8[7]Yuan Qi. Learning algorithms for video and audio processing: Independent component analysis and support vector machine based approaches[R].College Park: University of Maryland at College Park, LAMP-TR-056(CAR-TR-951), 2000
  • 9[8]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: Proceedings of Computer Vision and Pattern Recognition, Puerto Rico, 1997.130~136
  • 10[9]C J C Burges. A tutorial on support vector machines for pattern recognition[J]. Data Mining, and Knowledge Discovery, 1998, 2(2):121~167

共引文献181

同被引文献94

引证文献10

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部