期刊文献+

模糊自适应PID在焦炉控制中的仿真 被引量:16

Simulation of Fuzzy Adaptive PID Control in Coke Oven Process Control
在线阅读 下载PDF
导出
摘要 针对焦炉温度大惯性、纯滞后、非线性和时变性等特点,结合PID和模糊控制两者的优点,提出了一种模糊自适应PID控制方法.对模糊自适应PID算法进行了理论分析,对焦炉生产的简化模型做了仿真研究.结果表明,采用模糊自适应PID控制,系统的调节时间缩短,响应速度加快,抗干扰能力和适应参数变化的能力都优于常规PID控制,具有更好的动态特性和稳定性,有效减少了炉温的波动. Combining both the advantages of PID controller and fuzzy control, a fuzzy adaptive PID controller is proposed for the characteristics of coke oven, such as big inertia, pure time-delay, nonlinearity and time-varying. The algorithm of fuzzy adaptive PID control is analyzed theoretically and the simplified production model of coke oven is simulated. The results showed that such a fuzzy adaptive PID controller has the advantages of shortening the time for system readjustment, quickening the response speed, higher anti-interference ability and adaptability to parameters' changing than conventional PID controller and better dynamic property/stability. All these can reduce effectively the fluctuation of coke oven temperature.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第10期1067-1070,共4页 Journal of Northeastern University(Natural Science)
基金 教育部高校骨干教师资助计划项目(42105010).
关键词 模糊控制 自适应控制 PID 焦炉控制系统 仿真 fuzzy control adaptive control PID coke oven control system simulation
  • 相关文献

参考文献9

  • 1Swanijung J,Palmu P.Development of coke-oven battery process management system at Rautaruukki Steel Works[J].Iron and Steel Engineer,1996,73(2):46-49.
  • 2Tian L F.Intelligent self-tuning of PID control for the robotic testing system for human musculoskeletal joints test[J].Annals of Biomedical Engineering,2004,32(6):899-909.
  • 3李卓,萧德云,何世忠.基于Fuzzy推理的自调整PID控制器[J].控制理论与应用,1997,14(2):238-243. 被引量:104
  • 4Guan X Z,Liu T N,Qu H Q.Application of fuzzy control theory to direct-heating furnace control system[A].Proceedings of the 4th World Congress on Intelligent Control and Automation[C].Shanghai,2002.396-399.
  • 5Gao Z Q,Trautzsch T A,Dawson J G.A stable self-tuning fuzzy logic control system for industrial temperature regulation[J].IEEE Transactions on Industry Applications,2002,38(2):414-424.
  • 6Kim E.A new approach to numerical stability analysis of fuzzy control systems[J].IEEE Transactions on Systems,2001,31(1):107-113.
  • 7Zhou B,Li W Y.Application of fuzzy theory on gas collector control[A].Proceedings of the Second International Conference on Machine Learning and Cybernetics[C].Xi'an,2003.2516-2519.
  • 8Hu R Q,Petr D W.A predictive self-tuning fuzzy-logic feedback rate controller[J].IEEE Transactions on Networking,2000,8(6):697-709.
  • 9郝晓静,杜钢,谢植,沈峰满.模糊因果聚类模型在高炉焦比预测中的应用[J].东北大学学报(自然科学版),2005,26(4):363-366. 被引量:10

二级参考文献11

  • 1崔党群,林德光.通径分析的矩阵算法[J].生物数学学报,1994,9(1):71-76. 被引量:39
  • 2李卓,Proc of 3th IEEE International Conf on Fuzzy Systerms,1994年
  • 3Hang C C,Proc of ISA 88International Conf and Exhibition,1988年
  • 4Porter B W, Baress E R, Holte R.Concept learning and heuristic classification in weak theory domains[J]. Artificial Intelligence, 1990,45(2):229-263.
  • 5Yang M S.On a class of fuzzy classification maximum likelihood procedures[J]. Fuzzy Sets and Systems, 1993,57:365-375.
  • 6Mandal D P. Partitioning of feature space for pattern classification[J]. Pattern Recognition, 1997,30(12):1971-1990.
  • 7Tamura S, Higuchi S, Taraka K. Pattern classification based on fuzzy relations[J]. IEEE Transaction on Systems Man and Cybernetics, 1971,1(1):61-66.
  • 8Miyamoto S, Nakayama K.Similarity measures based on a fuzzy set model and application to hierarchical clustering[J]. IEEE Trans System Man Cybernet, 1986,16(3):479-482.
  • 9Kamel M, Selim S Z.New algorithms for solving the fuzzy clustering problem[J]. Pattern Recognition, 1994,27(3):421-428.
  • 10Yang M S, Ko C H. On a class of fuzzy C-numbers clustering problems for fuzzy data[J]. Fuzzy Sets and Systems, 1996,84:49-60.

共引文献112

同被引文献84

引证文献16

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部