期刊文献+

Effect of Fe Particle on the Surface Peeling in Cu-Fe-P Lead Frame 被引量:1

Effect of Fe Particle on the Surface Peeling in Cu-Fe-P Lead Frame
在线阅读 下载PDF
导出
摘要 Under the surface peeling of Cu- Fe- P lead frame alloy larger Fe particles were observed by energy dispersive spectroscopy. By using the large strain two-dinension plane strain model and elastic plastic finite element method, the cause for peeling damage of Cu-Fe-P lead frame aUoy was investigated. The results show that when the content of Fe particles is more than 30% at local Fe-rich area the intense stress coacentration in the Fe particle would make the Fe particle broken up. The high equivalent stress mutation and the mismatch of equivalent strain 10% at the two sides of intefrace make it easy to develop the crack and peeling damage on finish rolling. The larger Fe particles in the Cu-Fe-P alloy should be avoided. Under the surface peeling of Cu- Fe- P lead frame alloy larger Fe particles were observed by energy dispersive spectroscopy. By using the large strain two-dinension plane strain model and elastic plastic finite element method, the cause for peeling damage of Cu-Fe-P lead frame aUoy was investigated. The results show that when the content of Fe particles is more than 30% at local Fe-rich area the intense stress coacentration in the Fe particle would make the Fe particle broken up. The high equivalent stress mutation and the mismatch of equivalent strain 10% at the two sides of intefrace make it easy to develop the crack and peeling damage on finish rolling. The larger Fe particles in the Cu-Fe-P alloy should be avoided.
作者 苏娟华
出处 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期18-20,共3页 武汉理工大学学报(材料科学英文版)
基金 Funded by the National "863" Plan of China ( No.2002AA331112) ,the Doctorate Foundation of Northwestern Poly-technical University,andthe Science Research Foundation of HenanUniversity of Science and Technology(No.2006ZY041)
关键词 Cu-Fe-P lead frame surface peeling equivalent Stress equivalent strain Cu-Fe-P lead frame surface peeling equivalent Stress equivalent strain
  • 相关文献

参考文献12

  • 1Ho J. Ryu,Hyung K. Baik,Soon H. Hong.Effect of thermomechanical treatments on microstructure and properties of Cu-base leadframe alloy[J].Journal of Materials Science.2000(14)
  • 2H. I. CHOI,K. Y. LEE,S. I. KWUN.Fabrication of high strength and high conductivity copper alloys by rod milling[J].Journal of Materials Science Letters.1997(19)
  • 3HJ Bohm,WHan.Comparisons Between Three-dimension- al and Two-dimensional Multi-particle Unit Cell Models for Particle Reinforced MMCs[].ModelSimulMaterSci Eng.2001
  • 4J B Correia,HADavies,C MSellars.Strengthingin Rapidly Solidified Age Hardened Cu-Cr and Cu-Cr-Zr Alloys[].Ac- ta Mater.1997
  • 5JuanhuaSU,QimingDONG,PingLIU,HejunLI,BuxiKANG.Prediction of Properties in Thermomechanically Treated Cu-Cr-Zr Alloy by an Artificial Neural Network[J].Journal of Materials Science & Technology,2003,19(6):529-532. 被引量:11
  • 6C MLandis,I J Beyerlein,R MMcmeeking.Micro-mechan- ical Simulation of the Failure of Fiber Reinforced Composites[].Journal ofthe Mechanics and Physics of Solids.2000
  • 7C Gonzaalez,J Llorca.A Self-consistent Approach to the Elasto-plastic Behaviour of Two-phase Materials Including Damage[].Journal ofthe Mechanics and Physics ofSolids.2000
  • 8Y Li,K T Ramesh,S C Chin.Viscoplastic Deformations and Compressive Damage in an A359/SiCP Metal-matrix Composite[].Acta Materialia.2000
  • 9N Lippmann,A Lehman,T Steinkopff.Modelling of the Fracture Behaviour of High Speed Steels Under Static Loading[].Computer Materials Science.1996
  • 10Liu P,Kang B X,Cao X G,et al.Aging precipitation and recrystallization of rapidly solidified Cu-Cr-Zr-Mg alloy[].Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing.1999

二级参考文献11

  • 1[1]I.Naotsugu: Journal of the Japan Copper and Brass Research Association, 1993, 32, 115. (in Japanese)
  • 2[2]P. Liu, B.X.Kang and X.G.Cao: Mater. Sci. Eng., 1999, A265,262.
  • 3[3]J.B.Correia, H.A.Davies and C.M.Sellars: Acta Metall., 1997,45(1), 177.
  • 4[4]H.J.Ryu, H.K.Baik and S.H.Hong: J. Mater. Sci., 2000, 35,3641.
  • 5[5]H.Fernee, J.Nairn and A.Atrens: J. Mater. Sci., 2001, 36,5497.
  • 6[6]Y.Jin, K.Adachi, T.Takeuchi and H.G.Suzuki: Metall. Mater.Trans., 1998, 29A, 2195.
  • 7[7]Yanli LIU: Acta Aeronaut. et Astronaut. Sin., 2001, 22(2),135. (in Chinese)
  • 8[8]L.H.Qi, J.J.Hou and P.L.Cui: J. Mater. Proc. Technol., 1995,95, 232.
  • 9[9]I.A.Basheer: J. Microbiol. Meth., 2000, 43, 3.
  • 10[10]J.A.Joines and M.W.White: Improved Generalization Using Robust Cost Functions, IEEE/ INNS Iht Joint Conference of Neural Networks, IEEE Press, New York, USA, 1992, 911.

共引文献10

同被引文献19

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部