期刊文献+

基于弹塑性模型的隧道周边应力分布及隧道间相互作用的参数研究(英文)

Parameter Studies for Simulation of Stress Distribution Around Tunnels and Interaction Between Tunnels With an Elasto-plastic Model
在线阅读 下载PDF
导出
摘要 基于弹塑性模型,研究了隧道周边应力分布及隧道间相互作用的参数.采用ANSYS软件,分析了一个和二个隧道在不同覆盖层厚度和不同隧道间距离等多种工况下,随粘聚力及内摩擦角变化时的应力状态及分布规律的变化.当覆盖层深度大于300 m时,最大应力值会随着粘聚力c的增大而线性增大,当覆盖层深度小于200 m,c值大于0.7 MPa时,最大应力值保持常数.当内摩擦角φ值小于临界内摩擦角φc时,最大应力值会随着φ的增大而线性增大;当φ值大于临界φc时,最大应力值保持常数.隧道间临界距离的增加使c和φ值的影响更显著.该研究结果对于采矿隧道的设计及保证其工程安全有重要意义. The paper describes parameter studies for simulation of stress distribution around tunnels and interaction between tunnels with an elasto-plastic model. A finite element method using ANSYS software has been used for the analysis of one and two tunnels by considering the variations of the cohesion of rock and the angle of internal friction at different overburden depths with different distances of separation. For cohesion c, the values of maximum stress linearly increase with the value of c increase when the depth is larger than 300m, but the values of maximum stress keep constant as c is larger than 0.7 MPa when the depth is less than 200 m. Furthermore, the maximum stress linearly rises as the values of φincrease. When the value ofφis less than a critical value φ, the maximum stress linearly increases with increasing values of φ but the values of maximum stress remain constant when φ is larger than φ The influences of c and φ enhance with critical separation distances increases. This fact is very important and essential for the design of mining tunnels and ensures engineering safety in tunnel engineering.
出处 《华中科技大学学报(城市科学版)》 CAS 2006年第3期94-98,共5页 Journal of Huazhong University of Science and Technology
关键词 数值模拟 粘聚力 内摩擦角 隧道 应力分布 相互作用 computer simulation cohesion friction angle tunnels stress distribution interaction
  • 相关文献

参考文献9

  • 1Alfreds R·Jumikis.Rock Mechanics (Second edition)[M].German Trans tech.publications clausthal-zellerfeld,Federal republic of German,1983.
  • 2Roberts A.Geotechnology.An Introductory Text for Students and Engineers[M].England:Oxford OX3OBW,1977.
  • 3Darryl L Logan.Finite Element Method[M].USA:Pacific Grove,CA 93950,2002.
  • 4Rao S S.The Finite Element Method in Engi-neering[M].England:Oxford OX3OBW,1982.
  • 5Davies A J.The Finite Element Method[M].New York:Oxford University Press,1980.
  • 6Ross C T F.Finite element methods in structural mechanics[M].England:Ellis Horwood Limited,Market Cross,Cooper Street,Chichester,West Sussex,PO19 1EB,1985.
  • 7Macknnon S D.Analysis of stress measurements using a numerical model methodology[J].2001,38 (2):699-709.
  • 8Bond A J,Macleod I A.A strategy for computer modeling in geotechnical design[J].Geotechnical Engineering,2001,149:59-102.
  • 9Jager J C.Fundamentals of Rock Mechanics[M].London:Chapman and Hall,1976.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部