摘要
讨论了一类多滞量带脉冲的抛物型方程组解的振动性质,利用平均值方法以及泛函不等式获得了其一切解在两类边界条件下振动的充分条件,其中利用了Green公式,Jesen不等式以及垂直相加的方法,把抛物型偏微分方程组的振动问题转化为微分脉冲不等式不存在最终正解的问题,然后在两类边界条件下分别得到了判别其所有解振动的充分条件.
The oscillation of solutions for an impulsive delay parabolic differential system is investigated. For two boundary value conditions, some sufficient conditions of oscillation of all solutions are obtained by using averaging method and functional inequality. By the Green's formula, Jesen inequality and vertical additive method, the oscillatory problem is reduced to which differential inequality has not eventually positive solution, and thereby sufficient conditions for oscillation of all solutions are respectively obtained under two boundary value conditions.
出处
《黑龙江大学自然科学学报》
CAS
北大核心
2006年第4期528-531,共4页
Journal of Natural Science of Heilongjiang University
基金
国家自然科学基金资助项目(4037300340372121)
中国地质大学优秀青年教师基金资助项目(05170616)
关键词
脉冲
时滞
抛物方程组
振动
impulsive
delay
parabolic differential system
oscillation