期刊文献+

一类变系数时滞线性系统的脉冲控制

Impulsive Control of a Class of Linear Delay Systems with Variable Coefficients
在线阅读 下载PDF
导出
摘要 在线性系境的脉冲控制研究中,传统的脉冲控制方法存在以下同题,(1)存在脉冲控制的向量单侧连续和满足原系统方程的矛盾;(2)脉冲同步控制系统的模型缺陷使得脉冲作用点实际上是系统的可去间断点。针对以上问题研究了一类脉冲控制方法,给出了此类脉冲拉制函数的具体表达式.解决了脉冲作用后的状态向量的单侧连续。突破传统方法处理此类问题时单侧连续的假设模式,并给出了相应的实例分析,得出了此类线性时变系统可脉冲控制的结论。 Two restraints exist in the traditional impulsive control method as follows: (1) the unilateral continuity and the solution of the original system are incompatible; (2) the impulse point is a removable discontinuity point because the model of the synchronous system is defective. An impulsive control method is discussed and the expression of the impulsive controlling function is given, thus solving the hypothetic mode of state vectors in traditional methods. Numerical results show that the linear delay system can be impulsively controlled.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2006年第B07期5-7,共3页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金(60574051)资助项目。
关键词 时滞线性系统 脉冲控制函数 脉冲控制 linear delay system impulsive control function impulsive control
  • 相关文献

参考文献10

  • 1Weng Peixuan, Yan Zhaoqin. Global existence and stability of functional differential equations with impulsive[J]. Ann of Diff Eqs, 1998, 14(2) : 330-338.
  • 2冯伟贞,陈永劭.脉冲微分系统的弱指数渐近稳定性[J].高校应用数学学报(A辑),2002,17(1):1-6. 被引量:11
  • 3Cui Baotong, Liu Yongqing, Deng Feiqi. Some oscillation problems for impulsive hyperbolic differential systems with several delays[J]. Applied Mathematics and Computation, 2003,146: 667-679.
  • 4Liu Xinzhi. Practical stabilization of control systems with impulsive effects[J]. J Math Anal Appl, 1992,166:563-576.
  • 5Liu Xinzhi, Kok Lay Teo, Yi Zhang. Absolute stability of impulsive control systems with time delay[J]. Nonlinear Analysis, 2005,62 : 429-453.
  • 6Liu Xinzhi. Impulsive stabilization of nonlinear systems [J].IMAJ of Math Control and Information,1993, (10):11-19.
  • 7Liu Xinzhi, Rohlf Katrin. Impulsive control of a Lokta-Volterra system [J]. IMAJ of Math Control and Information, 1998, 15:268-284.
  • 8Sun Jitao, Qiao Fei, Wu Qidi. Impulsive control of a financial model[J]. Physics Letters A, 2005, 335:282-288.
  • 9刘秀湘,胥布工.一类非线性时滞系统的脉冲控制[J].华南理工大学学报(自然科学版),2005,33(5):11-14. 被引量:3
  • 10邓学辉,崔宝同.一类变系数时滞系统的脉冲镇定[C]//程代展,胥布工编.第24届全国控制论会议论文集.广州:华南理工大学出版社,2005:740—743.

二级参考文献7

  • 1申建华.脉冲微分方程与系统的稳定性与不稳定[J].湖南数学年刊,1994,14:41-46.
  • 2Liu Xin-zhi. Practical stabilization of control systems with impulse effects [J].J Math Anal Appl ,1992 ,166 :563-576.
  • 3Liu Xin-zhi. Impulsive stabilization of nonlinear systems[J]. IMA of Math Control and Information,1993,10:ll-19.
  • 4Liu Xin-zhi, Rohlf Katrin. Impulsive control of a LoktaVolterra system [J]. IMA J Math Control Information,1998,15:268-284.
  • 5Liu Xin-zhi. Impulsive stabilization and control of chaotic system [J]. Nonlinear Analysis .2001,47:1081-1092.
  • 6Ballinger G, Liu X. Existence and uniqueness results for impulsive delay differential equations [J]. DGDIS, 1999,5:579-591.
  • 7冯伟贞.二阶微分方程的脉冲镇定[J].华南师范大学学报(自然科学版),2001,33(1):16-19. 被引量:11

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部