摘要
研究了Lorenz系统的非线性动力学.采用一维时间序列相空间重构技术和系统混沌的定量判据准则,揭示出Lorenz系统从规则运动转化到混沌运动所具有的普适特征:该系统可通过Pom eau-M annev ille途径走向混沌,且其间歇性与Hop f分岔和倍周期分岔有关,在这些途径上既可观察到锁相和准周期运动,也可观察到类似于Lorenz吸引子的奇怪吸引子.本研究成果有助于理解最终的混沌状态的性质.
Nonlinear dynamics of Lorenz system is researched. By using phase space reconstruction technique from time series and the quantitative criterion and rule of system chaos, the general features of Lorenz system transforming from regularity to chaos are revealed: chaotic patterns of the Lorenz system may emerge out of Pomeau-Manneville route and its intermittence has something to do with Hopf bifurcation and period-doubling bifurcation. On these routes, not only phase locking and quasiperiodic motion, but also the strange attractor which resembles to the Lorenz attractor can be observed. The research can contribute to the comprehension of properties of ultimate chaos.
出处
《大连理工大学学报》
EI
CAS
CSCD
北大核心
2006年第4期582-587,共6页
Journal of Dalian University of Technology
基金
国家自然科学基金资助项目(60573172)
辽宁省教育厅高等学校科学技术研究资助项目(20040081)
关键词
LORENZ系统
相空间重构技术
混沌的定量判据准则
分岔
通向混沌的道路
Lorenz system
phase space reconstruction technique
quantitative criterion and rule of system chaos
bifurcation
approach to chaos