摘要
本文研究了一类时滞抛物微分方程组在齐次Neumann边界条件下解的振动性,用平均值技巧和Green公式把时滞抛物方程组的振动问题转化为泛函微分方程组的振动问题,获得了判别其所有解振动的一个易于验证的充要条件,并举出实例对主要结果进行阐明.
In this paper, we discuss oscillatory property of a class of systems of differential parabolic equations with delays. We use averaging technique and Green's formula in order to change the problem into the oscillation of systems of functional differential equations. We obtain a necessary and sufficient condition for the oscillation of their solutions, which is easy to verify. We explain the main results with examples.
出处
《数学杂志》
CSCD
北大核心
2006年第4期437-440,共4页
Journal of Mathematics
基金
国家自然科学基金资助项目
关键词
时滞抛物方程组
振动
充要条件
systems of parabolic equations with delays
necessary and sufficient condition