期刊文献+

基于神经网络的表面粗糙度智能预测系统 被引量:4

The study of intelligent forecasting system of surface roughness based on neural network
在线阅读 下载PDF
导出
摘要 表面粗糙度趋势分析及预测技术是计算机集成制造系统故障诊断技术发展的迫切需要。本文在讨论神经网络非线性、多因素预测原理及其拓扑结构的基础上,基于神经网络方法设计了智能型的工件表面粗糙度监测预测系统,将非线性预测和多因素预测引入表面粗糙度预测模型中,即在进行工件表面租糙度预测时兼顾了刀具磨损,从而使本系统拥有可靠和高精度的预测效果。 The study of trend analysis and forecasting method of surface roughness are an urgent need of fault diagnosis technology in CIMS. Non - linear and multi - feature forecasting theory of neural network is discussed in the paper, and is put into use in the monitoring and forecasting system of surface roughness. Tool wear state information is contained in the forecasting model too. So it is an intelligent forecasting system which has reliable and accurate forecasting result. The system will be widely used in the machinery fault diagnosis in the near future.
出处 《机床与液压》 北大核心 1996年第4期37-38,31,共3页 Machine Tool & Hydraulics
关键词 神经网络 非线性预测 因素预测 表面粗糙度 Neural network Non - linear forecasting Multi - feature forecasting Surface roughness Tool wear
  • 相关文献

同被引文献21

  • 1张臣,周儒荣,庄海军,周来水.基于BP神经网络的球头铣刀铣削力建模与仿真[J].中国机械工程,2005,16(20):1791-1794. 被引量:15
  • 2徐西鹏,黄辉,徐鸿钧.断续 CBN 砂轮缓进给磨削 K417 航空叶片材料的研究[J].航空学报,1997,18(3):316-323. 被引量:10
  • 3Lin S Y, Cheng S H. Construction of a Surface Roughness Prediction Model for High Speed Machining[J]. Mechanical Science and Technology, 2007, 10(21) : 1622-1629.
  • 4Othman M O, Elkholy A H. Surface Roughness Measurement Using Dry Friction Noise[J] . Experimental Mechanics,1990,30(9) :309-311.
  • 5Singh D, Rao P V. A Surface Roughness Prediction Model for Hard Turning Process [J]. Advanced Manufacturing Technology, 2007,32 ( 11 / 12 ) : 1115 - 1124.
  • 6Salgado D R, Alonso F J. Inprocess Surface Roughness Prediction System Using Cutting Vibrations in Turning[J]. Advanced Manufacturing Technology, 2009,7 (43) : 40-51.
  • 7Chern G L, Lee H J. Using Workpiece Vibration Cutting for Micro--drilling[J]. Advanced Manufacturing Technology, 2006,27 (1) : 688-692.
  • 8Ekici S,Yildirim S,Poyraz M. Energy and Entropy --based Feature Extraction for Locating Fault on Transmission Lines by Using Neural Network and Wavelet Packet Decomposition[J]. Science Direct, 2008,34:2937-2944.
  • 9Zhang J Z,Chen J C. The Development of an Innprocess Surface Roughness Adaptive Control System in Turning Operations[J]. Intellectual Manufacturing, 2007,18(6): 301-311.
  • 10Pal S K, Chakraborty D. Surface Roughness Prediction in Turning Using Artificial Neural Network[J]. Neural Computation, 2005,14(12) : 319 -326.

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部