期刊文献+

木糖异构酶在酿酒酵母表面表达及对木糖代谢影响的初步研究 被引量:7

Expression xylose isomerase on Saccharomyces cerevisiae cell surface and its influence on xylose metabolism
在线阅读 下载PDF
导出
摘要 利用α-型酿酒酵母(Saccharomyces cerevisiae)表面展示系统的载体,将来源于嗜热细菌Thermus thermophilus的木糖异构酶基因xylA,插入到酿酒酵母蔗糖酶信号肽序列与α-凝集素的C端编码序列之间,形成融合表达框,构建重组质粒pSY-xy222,转化酿酒酵母H158。含重组质粒的菌株H158-SXI木糖异构酶活性测定表明,细胞壁上酶活测定值为1.53 U,木糖异构酶在酿酒酵母细胞壁上得到活性表达。木糖葡萄糖共发酵结果显示,重组菌株木糖利用率较出发菌株提高了17.8%。 The xylose isomerase gene xylA from Thermus thermophilus was fused with the sequence encoding the α-agglutinin C-terminal of Agαp and the signal peptide of S. cerevisiae invertase contained in the yeast α- agglutinin surface display vector pPGA1. The fused gene was under the control of PGK promoter. The recombinant plasmid was transformed into the yeast stain H158 by the lithium acetate method. The recombinant strain expressing the fusion protein was named H158-SXI. The XI activity detected on cell wall was 40.33 U/g dry weight. Glucose and xylose co-fermentation by H158-SXI consumed 4.8 g/L xylose,which is 17.8% higer than parent strain H158.
出处 《生物加工过程》 CAS CSCD 2006年第1期30-34,共5页 Chinese Journal of Bioprocess Engineering
基金 国家自然科学基金委员会资助项目(No:50273019)
关键词 酵母表面展示 α-凝集素 木糖异构酶 酿酒酵母 yeast surface display α-agglutinin xylose isomerase Saccharomyces cerevisiae
  • 相关文献

参考文献12

  • 1[1]Ying W,Wenlong S,Xiangyong L,et al.Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisia[J].Biotech Lett,2004,26:885-890.
  • 2沈煜,王颖,鲍晓明,曲音波.酿酒酵母木糖发酵酒精途径工程的研究进展[J].生物工程学报,2003,19(5):636-640. 被引量:25
  • 3[3]Hamacher T,Becker J.Characterization of the xylose-transporhng properties of yeast hexose transporters and their influence on xylose utilization[J].Microbiol,2002,148:2 783-2 788.
  • 4[4]Miroslav S,Ho NW.Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast[J].Yeast,2004,21(8):671-684.
  • 5[5]Mitsuyoshi U,Atsuo T.Genetic immobilization of proteins on the yeast cell surface[J].Biotechnology Advances,2000,18:121-140.
  • 6[6]Walfridsson M,Bao X,Anderlund M,et al.Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene which expresses an active xylose (glucose) isomerase[J].Appl Environ Microbiol,1996,62(12):4 648-4 651.
  • 7[7]Marko K,Maurice T,Jasper D,et al.Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain[J].FEMS Yeast Res,2005,5:925-934.
  • 8沈煜,侯进,鲍晓明,等.木糖异构酶在酿酒酵母表面的展示[J].工业微生物,2005,36(1):1-3.
  • 9沈煜,郑华军,王颖,鲍晓明,曲音波,白凤武.木酮糖激酶表达水平对酿酒酵母木糖代谢产物流向的影响[J].生物化学与生物物理进展,2004,31(8):746-751. 被引量:11
  • 10[10]Toshiyuki M,Mitsuyoshi U,Atsuo T,et al.Construction of a starch-utilizing yeast by cell surface engineering[J].Appl Enviro Microbiol,1997,63(4):1 362-1 366.

二级参考文献14

  • 1郁静怡,杨胜利.代谢工程[J].生物工程学报,1996,12(2):109-112. 被引量:13
  • 2[1]Nancy H, Zhengdao C, Adam P B. Genetically engineered Saccharomyces cerevisiae yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol, 1998, 64 (5):1852 ~ 1859
  • 3[2]Walfridsson M, Anderlund M, Bao X, et al. Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol, 1997, 48(2): 218 ~224
  • 4[3]Walfridsson M, Bao X, Anderlund M, et al. Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol, 1996, 62 (12):4648 ~4651
  • 5[4]Walfridssion M, Hallbom J, Penttil M, et al. Xylose metabolising Saccharomyces cerevisiae overexpressing the TKL1 and TAL1 genes encoding the pentose phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol, 1995, 61 (2): 4184~4190
  • 6[5]Anna E, Camilla C, Fredrik W, et al. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1,XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol, 2000, 66 (8): 3381~3386
  • 7[6]Hallborn J, Gorwa M F, Meinander N, et al. The influence of cosubstrate, and aeration on xylitol formation by recombinant Saccharomyces cerevisiae expressing the XYL1 gene. Appl Microbiol Biotechnol, 1994, 42 (2 ~3): 326~333
  • 8[7]Dekker K A, Yamagata H, Sakaguchi K, et al. Xylose (glucose)isomerase gene from the Thermophile thermus thermophilus: loning,sequencing and comparison with other thermostable xylose isomerase. J Bacteriol, 1991, 173 (10): 3078~3083
  • 9[9]Blomqvist K, Suihko M L, Knowles J, et al. Chromosomal integration and expression of two bacterial c-acetolactate decarboxylase genes in brewer's yeast. Appl Environ Microbiol,1991, 57 (10): 2796~2803
  • 10[10]Mellor J, Dobson M J, Roberts N A, et al. Efficient synthesis of enzymatically active calf chymosin in Saccharomyces cerevisiae.Gene, 1983, 24 (1): 1~14

共引文献33

同被引文献155

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部