摘要
对任意矩阵X,X(X′X)-X′与广义逆(X′X)-的选取无关,且有X=X(X′X)-X′X,X′=X′X(X′X)-X′.本文拓展了上述结果,证明了对任意正定阵V,X(X′V-1X)-X′V-1与广义逆(X′V-1X)-的选取无关,并有X=X(X′V-1X)-X′V-1X,X′=X′V-1X(X′V-1X)-X′.利用上述推广的结果,直接给出了广义线性模型中可估函数c′β的最小二乘估计c′β*的唯一性和无偏性的证明.
As well known, for a random matrix X, the choose of the generalized inverse (X'X)^- is nothing to do with X ( X' X )^- X' , and X = X( X' X )^- X' X , X' = X' X ( X' X )^- X' . In this paper, we extend these results and prove that the generalized inverse ( X' V^-1X)^- is nothing to do with X ( X' V^- 1 X) - X' V^- 1 for a random definite matrix V, and we have X = X( X' V ~ 1 X) - X' V- 1 X, X' = X' V- 1 X ( X' V- 1 X )^- X'. Using this generalization, we obtain a direct proof of the uniqueness and unbiasedness on the least square estimate c'β* of the estimable function c'β* in the generalized linear models.
出处
《南阳师范学院学报》
CAS
2006年第3期17-18,共2页
Journal of Nanyang Normal University
关键词
广义逆
广义线性模型
最小二乘估计
generalized inverse
generalized linear model
the least square estimate