期刊文献+

基于小波系数相关性的图像融合新方法 被引量:12

Image Fusion Based on Relativity of Wavelet Coefficients
在线阅读 下载PDF
导出
摘要 文中在阐述小波变换原理的基础上,针对融合算子的构造,给出了一种新的基于小波系数相关性的融合方法。以分解后的高频子图像的区域均值、方差、协方差统计参量构造匹配度和加权因子,以此对高频子图像的对应区域进行融合计算;低频部分采取加权平均融合规则;最后,通过小波逆变换得到融合图像。用熵、交叉熵和交互信息量对融合结果进行了客观评价,并与其它几种算法进行了比较。实验结果表明,此方法融合效果要优于一般融合方法,计算也比较简单,有一定的工程实用价值。 Based on expatiate wavelet transform principle, aimed at the construction of fusion operator, a new scheme using the correlation of decomposition coefficients is presented. With mean, variance and covariance of decomposed high frequency sub-image, the matching degree and adding coefficient can be gained, and then the fusion calculation of high frequency sub-image can be completed. For low frequency sub-image, average coefficient is adopted. Finally the fusion image is obtained by taking inverse wavelet transform. In addition, with entropy, cross entropy and mutual information, the performance of fusion scheme is evaluated and compared with other schemes. The experimental results show this fusion scheme is effective than other fusion schemes, the calculation course is simple, and has application value to engineering.
出处 《激光与红外》 CAS CSCD 北大核心 2006年第3期227-230,共4页 Laser & Infrared
基金 国家863高技术项目(2003AA823050)
关键词 图像融合 小波变换 分解系数 相关 融合性能 image fusion wavelet transform decomposition coefficients correlation fusion performance
  • 相关文献

参考文献10

二级参考文献44

  • 1崔锦泰 程正兴(译).小波分析导论[M].西安:西安交通大学出版社,1995..
  • 2Castleman Keneth R 朱志刚 等.数字图象处理[M].北京:电子工业出版社,1998.146-214.
  • 3霍宏涛 林小竹 何薇.数字图象处理[M].北京:北京理工大学出版社,2002.187~193.
  • 4KennthRCastleman.数字图像处理[M].北京:电子工业出版社,1998..
  • 5[1]Toet A. Hierarchial image fusion. Machine Vision and Applications,1990,3(1): 1—11
  • 6[2]Toet A. Multiscale contrast enhancement with application to image fusion.Optical Engineering,1992,31(5): 1026—1031
  • 7[3]Yocky D A. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of Optical Sciety of America, A, 1995,12(9): 1834—1841
  • 8[4]Nunez J,Otazu X,Fors O,et al. Multiresolution-based image fusion with additive wavelet decomposition.IEEE Transactions on Geoscience and Remote Sensing,1999,37(3): 1204—1211
  • 9[5]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation.IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7): 674—693
  • 10[6]Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998, 302—310

共引文献208

同被引文献102

引证文献12

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部