期刊文献+

求解双正交小波提升格式系数的新方法 被引量:5

New method for calculating lifting coefficients of biorthogonal wavelet
在线阅读 下载PDF
导出
摘要 为获得快速提升小波变换的系数,根据双正交小波提升格式的特点,给出求解提升系数的解方程组方法.该方法基于前向提升小波变换的预测和更新过程组合成的多项式矩阵表示形式判断提升的级数,联立方程求解,得到双正交小波变换的提升系数.将此方法与双正交小波滤波器构造方法相结合,对照滤波器的系数值,得到提升小波变换的尺度因子.结果表明无论先预测后更新或先更新后预测的提升格式,都可采用该方法求解它们的提升系数. To make out the coefficients of the fast lifting wavelet transform, a new method for calculating the coefficients of lifting scheme was presented. According to the polyphase representation of forward lifting with the prediction and update stages combined into one matrix, the number of lifting stage was obtained using this method. The lifting coefficients of the biorthogonal wavelet transform were available from solving the simultaneous equations. Combined with the construction methods of the biorthogonal wavelet filters, the proposed method contrasted the coefficients of the filters and obtained the scale factors of the lifting wavelet transform. The results indicate that the lifting coefficients can be solved using the proposed method no matter that the lifting scheme is the prediction process first or the update process first.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2004年第12期1665-1668,共4页 Journal of Zhejiang University:Engineering Science
关键词 双正交小波 提升格式 图像压缩 Calculations Fourier transforms Image compression Nonlinear filtering
  • 相关文献

参考文献11

  • 1SWELDENS W. The lifting scheme: A new philosophy in biorthogonal wavelet constructions [A].Proceedings of SPIE on Wavelet Applications in Signal and Image Processing III [C]. San Diego: SPIE,1995: 68-79.
  • 2SWELDENS W. The lifting scheme: A construction of second generation wavelets [J].SIAM Journal Mathematical Analysis, 1997, 29(2): 511-546.
  • 3SWELDENS W, SHROEDER P.Building your own wavelets at home[R].Columbia: University of South Carolina,1995.
  • 4李洪刚,吴乐南.基于任意小波的提升格式的设计[J].东南大学学报(自然科学版),2001,31(4):22-26. 被引量:12
  • 5曾剑芬,马争鸣.提升格式与JPEG2000[J].中山大学学报(自然科学版),2002,41(1):32-34. 被引量:6
  • 6曾剑芬,马争鸣.提升格式:多项式拟合的预测方法[J].电路与系统学报,2001,6(3):62-67. 被引量:5
  • 7屈稳太,诸静.图像小波变换中的两个关键技术——滤波器的正则性与信号的边界处理[J].浙江大学学报(工学版),2003,37(2):185-189. 被引量:14
  • 8DAUBECHIES I,SWELDENS W. Factoring wavelet transforms into lifting steps[ J ]. Journal of Fourier Analysis and Application, 1998,4(3): 245-267.
  • 9CLAYPOOLE R, DAVIS G, SWELDE W, et al. Nonlinear wavelet transforms for image coding[A].In Proceedings of the 31st Asilomar Conference on Signals, Systems and Computers[C]. Pacific Grove: [s.n.],1997: 662-667.
  • 10CLAYPOOLE R L, BARANIUK R G, NOWAK R D. Adaptive wavelet transforms via lifting[R]. Houston, Texas: Department of Electrical and Computer Engineering, 1999.

二级参考文献24

  • 1[1]Sweldens W. The lifting scheme: a new philosophy in biorthogonal wavelet constructions. In: Laine A F, Unser M, eds. Wavelet Applications in Signal and Image Processing III Proc SPIE 2569,1995. 68~79
  • 2[2]Sweldens W. The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl Comput Harmon Anal,1996,3(2): 186~200
  • 3[3]Sweldens W. The lifting scheme: a construction of second generation wavelets. SIAM J Math Anal, 1997, 29(2): 511~546
  • 4[4]Mallat S G. Multiresolution approximation and wavelet orthogonal bases of L2(R). Trans Amer Math Soc, 1989, 315(1): 69~87
  • 5[5]Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps. J Fourier Anal App, 1998, 4(3): 245~267
  • 6[6]Vetterli M, Herley C. Wavelets and filter banks: theory and design. IEEE Trans on Acoust Speech Signal Processing, 1992, 40(9): 2207~2232
  • 7[1]Wim Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets[J]. SIAM J. Math. Anal., 1998, 511-546
  • 8[2]lngrid Daubechies and Wim Sweldens. Factoring Wavelet Transforms into Lifting Steps[R]. Technical report, Bell Laboratories,Lucent Technologies, 1996
  • 9[3]JPEG2000 Part I Final Committee Draft Version 1.0[S], http://www.jpeg.org/FCD15444-1.htm
  • 10[4]Mallat S A. Theory for Multiresolution Signal Decompositions: the Wavelet Representafion[J]. IEEE Trans on PAMI, 1989

共引文献32

同被引文献24

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部