期刊文献+

调制故障源信号盲分离的经验模态分解法 被引量:12

Empirical mode decomposition for blind separation of modulation fault source signals
在线阅读 下载PDF
导出
摘要 针对非线性、非稳态、含噪原始信号混合且混合信号数目小于源信号数目的旋转机械调制故障源信号盲分离问题,提出了一种基于经验模态分解(EMD)和主成分分析(PCA)相结合的方法.对混合信号进行经验模态分解提取嵌入在信号中的所有振荡模式,应用主成分分析方法对所提取的模式进行共性分析,得到模式中的主要成分.利用该方法对仿真数据和两通道滚动轴承加速度振动数据进行了分析,结果表明,该方法能够有效突出旋转机械的故障特征频率成分,避免了误诊断,且适用范围优于独立分量分析方法. An approach based on empirical mode decomposition (EMD) and principal component analysis (PCA) was presented to deal with the blind source separation (BSS) problem of rotation machines in the case of nonlinear, non stationary, noisy source mixing and the number of observed mixtures being less than that of contributing sources. EMD method was used to extract all oscillatory modes embedded in the observed signals, then PCA method was used to aggregate similar modes into unifying components. The method was applied to analyze the simulation signals and the two-way roller bearing acceleration vibration signals. Analysis result shows that this method can identify the rotation machine's fault characteristic frequency clearly and that the application scope is larger than that of independent component analysis (ICA) method.
作者 孙晖 朱善安
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第2期258-261,共4页 Journal of Zhejiang University:Engineering Science
关键词 经验模态分解 主成分分析 调制 盲源分离 empirical mode decomposition (EMD) principal component analysis (PCA) modulation blind source separation (BSS)
  • 相关文献

参考文献7

  • 1YPMA A,LESHEM A,DUIN R PW.Blind separation of rotating machine sources:Bilinear forms and convolutive mixtures[G]// Neurocomputing-Special Issue on ICA/BSS.2002:123-134.
  • 2GELLE G,COLAS M,DELAUNARY G.Blind sources separation applied to rotating machines monitoring by acoustical and vibrations analysis[J].Mechanical Systems and Signal Processing,2000,14(3):427-442.
  • 3焦卫东,杨世锡,吴昭同.机械故障模式识别的ICA基神经网络方法[J].农业机械学报,2004,35(4):151-154. 被引量:3
  • 4李力,屈梁生.应用独立分量分析提取机器的状态特征[J].西安交通大学学报,2003,37(1):45-48. 被引量:15
  • 5HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London A,1998,454:903-995.
  • 6RILLING G,FLANDRIN P.On empirical mode decomposition and its algorithms[EB/OL].[2004-10-118].http:// perso.ens-lyon.ft/patrick.flandrin/abstractC126.html.
  • 7杨世锡,胡劲松,吴昭同,严拱标.基于高次样条插值的经验模态分解方法研究[J].浙江大学学报(工学版),2004,38(3):267-270. 被引量:17

二级参考文献23

  • 1[1]HUANG N E, SHEN Z,LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J].Proceedings of the Royal Society of London, A, 1998,454:903-995.
  • 2[2]National aeronautics and space administration. Better algorithms for analyzing nonlinear, non-stationary data [EB/OL]. http://tco, gsfc. nasa. gov ,2002-12-02.
  • 3[3]LOH C H ,WU T C, HUANG N E. Application of the empirical mode decomposition-Hilber t spectrum method to identify near-fault ground-motion characteristics and structural responses [J]. Bulletin of the Seismological Society of America, 2001,91: 1339-1357.
  • 4[4]ZHU X, SHEN Z, ECKERMANN S D, et al. Gravity wave characteristics in the middle atmosphere derived from the empirical mode decomposition method [J].Journal of Geophysical Research-Atmosphere, 1997,102:16545-16561.
  • 5[5]ECHEVERRIA J C, CROWEA J A, WOOLFSON M S, et al. Application of empirical mode decomposition to heart rate variability analysis [J]. Medical & Biological Engineering & Computing, 2001,39: 471 - 479.
  • 6[6]ERKORKMAZ K, ALTINTAS Y. High speed CNC system design. Part 1: Jerk limited trajectory generation and quintic spline interpolation [J]. International Journal of Machine Tools & Manufacture, 2001, 41:1323-1345.
  • 7Pierre Comon. Independent component analysis, A new concept? Signal Processing, 1994,36:287~314
  • 8Porrill J, Stone J V, Berwick J, et al. Analysis of optical imaging data using weak models and ICA. Based on a workshop held after the 1999 International Conference on Artificial Neural Networks (ICANN).
  • 9Ypma A, Leshem A, Duin R P W. Blind separation of rotating machine sources: bilinear forms and convolutive mixtures. Neurocomputing-special Issue on ICA/BSS, 2002.
  • 10Alexander Ypma, David M J Tax, Robert P W Duin. Robust machine fault detection with independent component analysis and support vector data description. Pattern Recognition Group, Dept. of Applied Physics, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands.

共引文献32

同被引文献111

引证文献12

二级引证文献130

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部