期刊文献+

基于改进PCA的故障检测与诊断方法 被引量:4

A Method of Fault Detection and Diagnosis Based on Wavelet De-noising and Principal Component Analysis
在线阅读 下载PDF
导出
摘要 提出了一种基于小波去噪和主元分析的故障检测和诊断方法。该方法利用小波分析先对正常工况下的数据进行处理,然后运用T2统计、Q统计方法,结合主元得分图和变量贡献图对一模型进行了仿真分析,结果表明,该方法是有效的。 A method of fault detection and diagnosis based on wavelet de-noise and principal component analysis is proposed. The data collected from the normal industry condition are processed by means of the wavelet analysis. The fault detection and diagnosis simulation to a model is performed by means of statistical method like Hotelling T^e and Q. The principal component scores charts and variables contribution charts are used to undertake fault diagnosis. Simulation results show that it is fairly effective.
出处 《石油化工自动化》 CAS 2006年第1期41-44,共4页 Automation in Petro-chemical Industry
关键词 主元分析 小波去噪 故障检测 故障诊断 principal component analysis(PCA) wavelet de-noise fault detections fault diagnosis
  • 相关文献

参考文献5

  • 1Martin E B, Morris J,Zhang J. Process performance monitoring using multivariate statistical process control. IEE Proc Control Theory, 1996,143(2) : 132-144.
  • 2文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报(自然科学版),2002,25(2):167-172. 被引量:156
  • 3方开泰.实用多元统计分析[M].上海:华东师范大学出版社,1986.83-87.
  • 4Kourti T, MacGregor J F. Multivariate SPC methods for process and product monitoring. Journal Qual Technol, 1996, (28):409.
  • 5Jackson J E. A User's Guide to Principal Components. New York; Wilery-Inter-Science, 1991.

二级参考文献7

共引文献177

同被引文献17

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部