期刊文献+

转炉冶炼终点静态控制预测模型 被引量:13

Static control predictive model for converter refining end-point
在线阅读 下载PDF
导出
摘要 基于天津天铁冶金集团30t转炉炼钢实际生产数据,首先建立了转炉炼钢终点静态控制的吹氧量及矿石用量统计模型,其预测100个炉次吹氧量和矿石用量平均相对误差分别为0.58%及10.4%。考虑到影响终点钢水温度和碳含量的因素比较复杂,设计了预测钢水终点温度和碳含量的人工神经网格模型,利用Levenberg-Marquardt算法和257个炉次的实际生产数据进行了模型训练,并对另外100个炉次的终点钢水温度及碳含量进行了预测,在终点钢水温度为1646-1698℃和终点碳质量分数为0.033%~0.128%的范围内,得到的终点碳温双命中率为55%。 On the basis of the practical production data of the 30 t converter steel-making process in Tianjin Tiantie Metallurgical Group Co. , ltd, a statistic model for prediction of the oxygen blow amount of the end-point static control BOF process and ore burden amount is established and the prediction accuracies of the oxygen blow amount an ore burden amount for over 100 heats are 0. 58 % and 10. 4 % respectively. In view of the complicated factors affecting the end-point temperature and carbon content of the liquid steel and artificial neural network based prediction model is designed and established for measurement of the end -point temperature and carbon content of the liquid steel and then simulation training is also carried out by way of Levenberg-Marquardt algorithm on the basis of the practical production data of over 257 heats. In addition, the end-point temperature and carbon content of the liquid steel of other 100 heats are also predicted. Within the controlled range of 1646℃ to 1698℃ of the end-point temperature and the end-point carbon content of 0.033 %and 0. 128 % the hit rate of the accurate prediction of both the end-point temperature and carbon content of the liquid steel attains to 55 %.
出处 《炼钢》 CAS 北大核心 2006年第1期45-48,共4页 Steelmaking
基金 天津大学"复杂过程检测与控制"创新平台资助项目(01BK-098-02-08)
关键词 转炉炼钢 终点控制 预测模型 converter refining process end-point control prediction model
  • 相关文献

参考文献6

二级参考文献15

  • 1张润宇,肖兵,张文弟.转炉钢水含碳量的估计[J].自动化学报,1993,19(3):381-383. 被引量:8
  • 2樊俊飞,李永如,姚海石.宝钢转炉吹炼控制模拟在线专家系统[J].宝钢技术,1996(4):50-54. 被引量:7
  • 3丁容,刘浏.转炉炼钢过程人工智能静态控制模型[J].钢铁,1997,32(1):22-26. 被引量:37
  • 4李彦平 潘德惠.-[J].控制与决策,1988,19(2):7-7.
  • 5[1]GALLOWAY S M, GREEN M J, BALAJEE S R, et al. Improvement in furnace performance at Inland steel company' s No. 2 BOF shop through models utilization and standardization of operating practices [ A]. 1991 Steelmaking Conf Proc [ C]. Pittsburgh: American Iron and Steel Society, 1991: 389 - 396.
  • 6[2]ANDERSON D, BARNES C M, WHITTAKER H J. Fully dynamic process control of the BOS in British Steel [ A]. 1991 Steelmaking Conf Proc [C]. Pittsburgh: American Iron and Steel Society, 1991:379 - 387.
  • 7[3]KEN I, MASAO F, MASAKAZU M, et al. New endpoint control system with auto-parameter-turning in BOF [ A ]. 1995 Steelmaking Conf Proc [C]. Nashville:American Iron and Steel Society, 1995:715-719.
  • 8[7]HUNT K J, SBARBARO D. Neural networks for nonlinear internal model control [ J]. IEE Proc-D: Control Theory and Application,1991,138 (5): 431-438.
  • 9张晓兵,北京科技大学学报,1994年,16卷,增2期,49页
  • 10竹中正树,国外钢铁,1992年,5期,26页

共引文献118

同被引文献141

引证文献13

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部