期刊文献+

基于波动法与模糊聚类的柴油机状态监测研究 被引量:5

STUDY ON CONDITION MONITORING OF DIESEL ENGINE BASED ON FLUCTUATION METHOD AND FUZZY CLUSTERING
在线阅读 下载PDF
导出
摘要 状态评级是柴油机状态监测的主要目的。常规的以特征参数变化倍数评级的方法对于经常拆迁的设备效果不理想;而模糊C(center)-均值聚类算法不能自动对聚类结果进行等级排序。文中提出的波动法与模糊C-均值聚类相结合的状态评级则有效地解决了上述问题。波动法原理为柴油机各缸的特征参数波动越小,则整机状态越好。选取与柴油机状态密切相关的7个参数组成特征向量,用现场采集的PZ12V190柴油机的35个样本建立聚类标准;将另10台柴油机与标准逐一再聚类,其结果与实际情况吻合得很好。表明该方法对多缸柴油机状态评级的有效性和实用性。 The condition evaluation is the main purpose of condition monitoring of diesel engine. The usual method evaluates the condition using the multiple of current parameters to the standard ones, which is not ideal for the equipments needing disassembling, moving and reassembling frequently. On the other hand, fuzzy C(center)-means clustering can not automatically sort the diesel engines by their conditions. A new method integrated with fluctuation method and fuzzy C-means clustering was put forward and solved the above difficult problems. The main principle of fluctuation method is that the fluctuation of characteristic parameters among cylinders is lower, the condition of the diesel engine is better. Then 7 parameters closely relative to the condition were selected to compose characteristic vector and 35 samples of model PZ12V190 diesel engine were collected to establish clustering criterion. The other 10 diesel engines were respectively clustered with the criterion and the results accorded with the actual condition very well, which shows that the integrated method is valid and practicable for the condition evaluation of multi-cylinder diesel engine.
出处 《机械强度》 EI CAS CSCD 北大核心 2005年第5期567-570,共4页 Journal of Mechanical Strength
基金 国家自然科学基金资助项目(50105015 50375103) 北京市科技新星基金资助项目(2003B33)。~~
关键词 柴油机 状态评级 波动法 模糊C(center)-均值 Diesel engine Condition evaluation Fluctuation mefhod Fuzzy C(center)-means
  • 相关文献

参考文献4

二级参考文献10

  • 1Pawlak Z. Rough Sets [J]. International Journal of Computer and Information Sciences, 1982, 11 ( 5 ) :341-356.
  • 2Jakub W. Finding Minimal Reducts Using Genetic Algorithms [C]. In: Skowron A. Proceedings of the Second Annual Joint Conference on Information Sciences, Wrightsville Beach: NC, 1995. 186-189.
  • 3Susmaga R. Analyzing Discretizations of Continuous Attributes Given a Monotonic Discrimination Function[J]. Intelligent Data Analysis, 1997, 1: 157-179.
  • 4Jang J. ANFIS: Adaptive-Network-Based Fuzzy Inference System [J ]. IEEE Transactions on Systems,Man, and Cybernetics, 1993, 23(3): 665-685.
  • 5Bezdek J. Pattern Recognition with Fuzzy Objective Function Algorithms [M]. New York: Plenum Press, 1981. 1-98.
  • 6Shen L, Tay F, Qu L, Shen Y. Fault Diagnosis Using Rough Sets Theory [J]. Computers in Industry,2000, 43(1): 61-72.
  • 7王朝晖等.“基于频响函数的缸压诊断模型”[J].金属矿山,1996,(12).
  • 8王立欣,杨春玲,于泳,蔡惟铮.基于聚类分析的周期性脉冲干扰的识别[J].哈尔滨工业大学学报,1999,31(3):18-20. 被引量:5
  • 9车丽娜,尚凯,朱洪雨.我国教师教育政策七十年历史演变及未来展望[J].教育理论与实践,2020,40(10):35-39. 被引量:15
  • 10谢维信,刘健庄.硬聚类和模糊聚类的结合——双层FCM快速算法[J].模糊系统与数学,1992,6(2):77-85. 被引量:9

共引文献52

同被引文献22

引证文献5

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部