期刊文献+

基于动态核聚类分析的水轮机组故障模式识别 被引量:9

Classification on the modes of hydro-generator unit fault based on dynamic kernel cluster analysis
在线阅读 下载PDF
导出
摘要 根据水轮机组振动故障与振动征兆之间复杂的非线性关系,总结了适用于水轮发电机组振动故障诊断的频谱特征表和振动部位幅值特征表;针对C-均值聚类易产生误分类问题,提出基于动态核聚类分析的水轮机组故障模式分类方法;对振动信号频率、振动信号幅值特征、振动部位进行分析,获得振动频谱征兆隶属度值,在此基础上,建立了基于故障分层的水轮机组运行状态自动诊断模型.工程应用实例表明:该模型的诊断效率是可行的,诊断结果具有较高的可信度. Based on the complicated relationships between the symptoms and the defects of hydro - generator unit, the frequency spectrum properties and amplitude properties applied to fault diagnosis for hydrogenerator unit were presented. In terms of false classification of Fuzzy C-Means, a dynamic kernel based clustering method was presented to distinguish fault pattern. Membership grade of symptoms of vibration frequency spectrum was acquired by analyzing frequency of vibration signals, amplitude properties and vibration position. A model of automatic diagnosis to hydroelectric power based on faults classification was built. Examples of project application indicated: Diagnosis efficiency of the model is very feasible and diagnosis result possesses superior reliability.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第9期47-49,52,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 江西省科技厅攻关项目(200210200211) 江西省教育厅科技项目(赣教计字[2001]387).
关键词 水轮机组 故障诊断 模式识别 聚类分析 hydro-generator unit fault diagnosis pattern classification kernel cluster analysis
  • 相关文献

参考文献7

  • 1沈东,褚福涛,陈思.水轮发电机组振动故障诊断与识别[J].水动力学研究与进展(A辑),2000,15(1):129-133. 被引量:68
  • 2张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590. 被引量:197
  • 3Marques J P de Sá 吴逸飞译.模式识别[M].北京:清华大学出版社,2002..
  • 4Milligan G. Clustering validation:results and implications for applied analysis[A].In:Arabie P, Hubert L, eds. Clustering and Classification[M].River Edge:World Scientific, 1996. 341-374.
  • 5Pedrycz W, Waletzky J. Fuzzy clustering with partial supervision[J].IEEE Trans on Syst, Man, and Cybertnet. Soc B, 1997, 27:787-795.
  • 6Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation, 1998(10):1299-1319.
  • 7李巍华,廖广兰,史铁林.核函数主元分析及其在齿轮故障诊断中的应用[J].机械工程学报,2003,39(8):65-70. 被引量:54

二级参考文献8

  • 1徐章遂 房立清 王希武 等.故障诊断信息原理及应用[M].北京:国防工业出版社,2000..
  • 2Schōlkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 1998(10): 1 299-1 319.
  • 3Schōkopf B, Smola A, Müller K R. Kernel principal component analysis. In: Sch61kopf B, Burges C, Smola A, eds.Advances in kernel methods-support vector learning, Cambridge MA:MIT Press, 1999:327-352.
  • 4沈东,水力机组故障分析,1996年
  • 5沈东,云南工学院学报,1991年,7卷,2期,20页
  • 6王柯,水力机组振动,1986年
  • 7常近时,水轮机运行,1983年
  • 8屈粱生 何正嘉.机械故障诊断学[M].上海:上海科学技术出版社,1986..

共引文献316

同被引文献72

引证文献9

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部