期刊文献+

基于内点法的支撑向量机算法 被引量:1

Support vector machine based on interior point algorithm
在线阅读 下载PDF
导出
摘要 内点法是近年来发展起来的求解线性规划和二次规划的一种新方法,它有许多优点。支撑向量机问题中的二次规划问题有它特殊的一些性质,如它是一个凸二次规划,约束比较少而且都是线性约束,它的矩阵Q对称半正定且稠密。该文探索了用内点算法求解支撑向量机中这种特殊的二次规划问题,并给出了数值实验,表明这是一种好的求解支撑向量机的方法。 Interior point algorithm, which possesses a lot of advantages, is a new method for solving linear programming and quadratic programming. The quadratic programming in support vector machine has its particular properties, such as convex quadratic programming, a little and linear constraints, symmetric positive semi- definite and dense Q - matrix. In this paper, solving the quadratic programming in SVM by interior point algorithm is investigated. The numerical experiments demonstrate its usefulness.
出处 《西安邮电学院学报》 2005年第3期107-110,共4页 Journal of Xi'an Institute of Posts and Telecommunications
基金 西安邮电学院中青年科研基金项目资助
关键词 支撑向量机 内点算法 二次规划 support vector machine interior point algorithm quadratic programming
  • 相关文献

参考文献8

  • 1V. N. Vapnik, An overview of statistical learning theory, IEEE Transactions On Neural Networks, 1999,10(5) :988 - 999.
  • 2Y. Ye, An extension of Karmarkar's algorithm and the trust region method for convex quadratic programming,in Progress in Mathematical Programming (N. Megiddo ed. ), Springer- Verlag, NY 49-63(1989).
  • 3Y. Ye, On affine- scaling algorithm for nonconvex quadratic programming, Math. Programming 56:285- 300 (1992).
  • 4Friess, T. -T, Cristianini, N., & Campell, C. The kernel adatron algorithm: A fast and simple learning procedure for support vector machines. In Proceeding of 15^th International Conference of Machine Learning. San Francisco, CA: Morgan Kaufman Publishers.
  • 5C. W. Hsu, C. J. Lin, A simple decomposition method for support vector machines, Machine Learning 46:291- 314(2002).
  • 6O L. Mangasarian, D R. Musicant, Successive overralaxation for support vector machines, IEEE Transactions On Neural Networks, 1999, 10 (5): 1032- 1037.
  • 7O. L. Mangasarian , D. R. Musicant. Lagrangian support vector machines. Journal of Machine Learning Research, 1:161 - 177 (2001).
  • 8C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Kownledge Discovery, 1998,2 (2): 121 - 167.

同被引文献10

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部