摘要
本工作遵循保真计算原理与方法,对正压原始方程气象传统全球(拟)谱模式方案进行.改造,构造了正压原始方程拟能完全守恒(拟)谱模式新型保真计算方案,解决了正压原始方程的(非线性)计算稳定性问题和拟能守恒整体性质保持问题,改进了相应正压原始方程气象传统全球(拟)谱模式方案的计算效能。新型保真方案的数值实验表明,计算实践中,新方案在解决拟能守恒问题的同时,可解决(非线性)计算稳定问题,并在一定条件下可解决非线性计算收敛性问题。进一步的比较数值实验还表明,计算实践中,新型保真计算方案在提高相应气象传统方案的计算精度、减少计算量、延长其计算时效、解决其由计算方法引人的“气候漂移”问题等诸多方面具有应用潜力。本工作原理也适用于斜压原始方程的情形。
In this paper, a meteorological traditional global pseudo-spectral scheme of barotropic primitive equation is restructed and a corresponding new perfect enstrophy conservative scheme is formulated in accordance with the principle of discrete compensation. Thus, the problems of both nonlinear computational instability and perfect enstrophy conservation retaining are completely solved, and the computational performance of the traditional scheme is improved. As the numerical experiments of the new schemes show, by solving the problem of enstrophy conservation scheme design, the new scheme in computational practice can solve their own problem of (nonlinear) computational instability and that of (nonlinear) computational convergence under certain condition. Further comparison betWeen the new schemes and the traditional one also indicates that, in discrete computational practice the new scheme applied to the case of nondivergence is capable of enlarging the valid integral time of the corresponding traditional scheme, capable of solving its own problem of 'climate drift', while at the same time improving its computational accuracy and reducing its amount of computation. This principle can also be applied to the case ofbarocoinic primitive equation.
出处
《大气科学》
CSCD
北大核心
1995年第4期445-454,共10页
Chinese Journal of Atmospheric Sciences
基金
国家"七五"
"八五"攻关项目
中国科学院大气物理研究所所长择优基金
关键词
非线性
正压
拟能守恒保真
谱模式
气压
nonlinear
computational instability
computational convergence
enstrophy fidelity scheme
long valid integral time
climate drift.