摘要
本文提出了求解对称性互补问题的乘性Schwarz算法,其中子问题用投影迭代方法求解.利用投影迭代算子的性质及投影迭代的收敛性,证明了算法产生的迭代点列的聚点为原互补问题的解,并在一定条件下,证明算法产生的迭代点列的聚点存在.
A multiplicative Schwarz algorithm for the solution of the symmetric linear complementarity problem is proposed,in which subproblems are solved by projective iterative methods.By using the propertise of the projective iterative operator and the convergence of the projective iterative methods.It is shown that any accumulation point of the iterates generated by the algorithm solves the linear complementarity problem.Moreover,under some conditions,the existence of an accumulation point is guaranteed.
出处
《应用数学》
CSCD
北大核心
2005年第3期384-389,共6页
Mathematica Applicata
基金
国家自然科学基金资助项目(10371035)
教育部优秀青年教师资助项目
关键词
乘性Schwarz算法
线性互补问题
对称双正矩阵
收敛性
Multiplicative Schwarz algorithm
Linear complementarity problem
Symmetric copositive matrix
Convergence