期刊文献+

电力系统小扰动稳定域应用研究 被引量:18

APPLICATION RESEARCH ON SMALL SIGNAL STABILITY ANALYSIS OF POWER SYSTEMS
在线阅读 下载PDF
导出
摘要 介绍了电力系统由结构稳定到倍周期分岔,直至混沌的自然规律,提出在先于混沌的分岔区域内仍可进行系统预测,其预测方法一定要注意接近混沌区域这一特性,应注重开发对初始条件敏感的预测方法;进行了工程实例验证,说明采用灰色模型(GM(1,1)、GM(1,1,ω*))、神经网络(BP)等预测方法可在小扰动临界状态得到较好的预测结果,优化后的GM模型、与BP网络相融合的预测模型的模拟精度更高。 The law from structural stability to period doubling bifurcation and chaos in power systems was analyzed. Bifurcation region before chaos could be predicated. The feature that is close to chaos must be noticed to get a reasonable result, and predication methods should be sensitive to original conditions. Predication methods, such as Gray Model (GM(1,1),GM(1,1, ω *)) and Back-propagation (BP) neural networks, are tested by engineering examples on small signal critical state and its more accurate predicated results can be gained by optimized GM model and BP neural networks.
作者 陈举华 徐楠
出处 《中国电机工程学报》 EI CSCD 北大核心 2004年第12期52-57,共6页 Proceedings of the CSEE
基金 山东省自然科学基金项目(Y2002F19)山东省科学技术发展计划项目(012050107)山东省技术创新项目(鲁经贸技字200311821)。
关键词 扰动 稳定域 混沌 倍周期分岔 系统预测 初始条件 结构稳定 电力系统 临界状态 灰色模型 Electric power engineering Small signal stability region Chaos Period doubling bifurcation GM(1,1) model
  • 相关文献

参考文献13

  • 1李颖晖,张保会,李勐.电力系统稳定边界的研究[J].中国电机工程学报,2002,22(3):72-77. 被引量:42
  • 2李颖晖,张保会.运用非线性系统理论确定电力系统暂态稳定域的一种新方法[J].中国电机工程学报,2000,20(1):41-44. 被引量:29
  • 3王成山,车延博.机组参数影响电力系统稳定性的μ分析框架[J].中国电机工程学报,2002,22(11):11-15. 被引量:2
  • 4贾宏杰,余贻鑫,王成山.电力系统混沌现象及相关研究[J].中国电机工程学报,2001,21(7):26-30. 被引量:69
  • 5Ajjarapu V, Lee B. Bifurcation theory and its application to nonlinear dynamical phenomena in an electrical power system. IEEE Transactions on Power Systems, 1992,7(1): 424-431.
  • 6Chiang H D , Liu C C. Chaos in a simple power system. IEEE Transactions on Power Systems, 1993,8(4): 1407-1417.
  • 7Lee B , Ajjarapu V. Period-doubling route to chaos in an electrical power system. IEEE Proceedings-C, 1993,140 (6): 490-496.
  • 8Tan C W, Varghese M, Varaiya P, et al . Bifurcation , chaos , and voltage collapse in power systems. Proceedings of the IEEE ,1995,33(11): 1484-1495
  • 9Hua O W, Eyad H A. Bifurcations , chaos , and crises in voltage collapse of a model power system. IEEE Transactions on Circuits and Systems- Ⅰ: Fundamental Theory and Applications, 1994,41(3):294-302
  • 10Rajesh K G, Padiyar K R. Bifurcation analysis of a three node power system with detailed models. International Journal of Electrical Power and Energy Systems, 1999,21 (5): 375-392

二级参考文献35

  • 1陈举华,辛有华.基因算法在模糊择优方法中的应用[J].农业机械学报,1997,28(S1):86-91. 被引量:4
  • 2余贻鑫,李国庆,戴宏伟.电力系统电压稳定性的基本理论与方法(四)[J].电力系统自动化,1996,20(9):69-73. 被引量:7
  • 3李颖晖.运用稳定流表变换确定电力系统暂态稳定性[M].西安:西安交通大学,2000..
  • 4Kopell N,Washburn J R B. Chaotic motion in the two degree of freedom swing equations[J]. IEEE CAS Part I,1982,29(11): 738-746.
  • 5Kwamy H G, FiscM R F, Nwankpa C O. Local bifurcation in power system:theory, computation and application[J]. Proceedings of the w.I~F.,1995,83(11): 1456-1483.
  • 6Beardmore R E. Stability and bifurcation properties of index-1 DAEs[J].Numerical Algorithms, 1998,19(1-4):43-53.
  • 7Kwatany H G, Pasrija A K, Bahar L Y. Static bifurcations in electric power networks: loss of steady state stability and voltage collapse[J]. IEEE Transactions on Circuits and Systems,1986,33(10): 981-991.
  • 8Venkatasubramanian V, Sehattler H, Zaborszky J.Dynamios of large constrained nonlinear systea taxonomy theoty[J]Procesdings of the IEEE.1995,83(11): 1530-1558.
  • 9Beardmore R E. The singularity induced bifurcation and its Kronecker normal form[J]. SIAM journal of Matrix Analysis,2001,23(1): 126-137.
  • 10Chiang H D,XL Theme:Advances in Electric Power Energy Conversion Systems Dynamics Control,1991年,43卷,3期,275页

共引文献200

同被引文献205

引证文献18

二级引证文献274

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部