期刊文献+

图像特征检测算法的分析与研究 被引量:10

Analysis on Image Feature Detection Algorithms
在线阅读 下载PDF
导出
摘要 从利用图像信息的角度 ,系统分析了图像特征检测问题的研究文献 ,将图像特征检测方法分为两大类 ,即基于梯度信息的方法和基于相位信息的方法。论述了每类方法的特点 ,并对主要的特征检测方法进行详细而全面的论述。 Image feature detection is a key technique in image processing, pattern recognition, content-based image retrieval, and so on. The typical image feature detectors are analyzed. From the viewpoint of information used, the literatures on image feature detection are analyzed systematically, and image feature detectors can be categorized in to two kinds, that is, gradient-based ones and phase-based ones. Characteristics of each kind are discussed. The key issues of the important image feature detector are explained extensively and comprehensively. Based on the survey, some concerned issues needed further research are presented, and the future research trends are also given.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2004年第12期1414-1420,共7页 Journal of Image and Graphics
基金 天津市高等学校科技发展基金项目 (2 0 0 41 3 0 4) 中国博士后科学基金项目 (2 0 0 3 0 3 43 2 8) 天津大学"985"项目
关键词 图像特征 类方 相位信息 研究文献 分析 方法 梯度信息 检测算法 特征检测 图像信息 image feature detection, phase information, image processing, phase congruency, symmetry phase congruency
  • 相关文献

参考文献38

  • 1Roberts L G. Machine perception of three-dimensional solids[A]. In: Optical and Electro-optical Information Processing [M], Tippet Ed,Cambridge,Mass:MIT Press, 1965: 159-197.
  • 2Prewitt J M S. Object enhancement and extraction [A]. In:Picture Processing and Psychopictorics [M], Lipkin B S,Rosenfeld A Ed, New York': Academic Press, 1970:75-149.
  • 3Pringle K K. Visual perception by a computer [A]. In:Automatic Interpretation and Classification of Images[M], New York: Academic Press, 1969: 277-284.
  • 4Sobel I. Neighborhood coding of binary images for fast contour following and general array binary processing [J]. Computer Graphics and Image Processing, 1978, 8: 127-135.
  • 5Marr D. Vision[M]. San Francisco: Freeman Publisher, 1982.
  • 6Marr D, Hildreth E C. Theory of edge detection [A]. In:Proceedings of the Royal Society [C], London, 1980, 207:187-217.
  • 7Fleck M M. Spectre: An improved phantom edge finder [A].In: Proceedings of 5th Alvey Vision Conference [C], UK,Oxon, 1989: 127-132.
  • 8Haralick R M. Digital step edges from zero crossings of second directional derivatives [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6 (1) : 58-68.
  • 9Sarkar S, Boyer K L. Optimal infinite impulse response zero crossing based edge detectors [J]. Computer Vision,Graphics,and Image Processing, 1991, 54(2): 224-243.
  • 10Canny J F. Finding edges and lines in images [D]. USA,Massachusetts, Massachusetts Institute of Technology, AI Lab. TR-720, 1983.

同被引文献70

引证文献10

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部