期刊文献+

取向玻璃纤维增强塑料的应力腐蚀开裂研究 被引量:13

STRESS CORROSION CRACKING OF ORIENTED GLASS FIBRE REINFORCED PLASTICS
在线阅读 下载PDF
导出
摘要  应用断裂力学的理论和方法对±30°、±45°、±60°三种取向玻璃纤维增强塑料的应力腐蚀开裂行为进行了研究,并与单向玻璃纤维增强塑料的应力腐蚀开裂行为进行了比较。结果表明,纤维取向对玻璃纤维增强塑料的应力腐蚀行为有很大影响。三种取向玻璃纤维增强塑料的耐应力腐蚀性能强弱顺序为:±30°、±45°、±60°玻璃纤维增强塑料。与单向玻璃纤维增强塑料相比,三种取向玻璃纤维增强塑料有更高的应力腐蚀临界载荷值,低于该载荷,可以认为在可接受的时间范围内不会发生应力腐蚀。进一步的讨论证实纤维/基体界面在取向玻璃纤维增强塑料的应力腐蚀中起着重要作用。随外加载荷的变化,取向玻璃纤维增强塑料与单向玻璃纤维增强塑料的应力腐蚀裂纹扩展机理不同。 Stress corrosion cracking of three kinds of oriented glass fibre reinforced plastics (GRP), including ±30°, ±45°, ±60° oriented GRP, were studied by fracture mechanics theory and compared with the stress corrosion cracking of unidirectional GRP. The results show that the fibre orientation affects on the stress corrosion cracking of GRP seriously. For the oriented GRP in this investigation, from better stress corrosion resistance to worse the order is ±30°, ±45°, ±60° oriented GRP. Compared with unidirectional GRP, oriented GRP demonstrate higher stress corrosion threshold loads, below which GRP can't fail in acceptable exposure time. Further discussions conform that fibre/matrix interface plays an important role in the stress corrosion cracking of oriented GRP and the crack growth mechanisms of oriented GRP and unidirectional GRP are different under different applied loads.
出处 《复合材料学报》 EI CAS CSCD 北大核心 2004年第6期39-46,共8页 Acta Materiae Compositae Sinica
关键词 应力腐蚀开裂 玻璃纤维增强塑料 纤维取向 裂纹扩展 Crack initiation Dynamic mechanical analysis Fracture mechanics Mechanical properties Scanning electron microscopy Stress corrosion cracking
  • 相关文献

参考文献18

  • 1Hogg P J. The stress corrosion of glass reinforced plastics[D]. Liverpool:University of Liverpool, 1981.
  • 2Hogg P J, Price J N, Hull D. Stress corrosion of GRP[A]. In: 39th Annual Conference, Reinforced Plastics/Compostes Institute, USA: The Society of the Plastics Industry, Inc.[C]. 1984. Session 5-c, 1-6.
  • 3Price J N. Stress Corrosion Cracking in Glass Reinforced Composites[A]. In: Fractography and Failure Mechanisms of Polymers and Composites[M]. UK:Elsevier, 1989.
  • 4Hogg P J. A model for stress corrosion crack growth in glass reinforced plastics[J]. Com Sci Tech, 1990, 38 (1): 23-42.
  • 5French M A, Pritchard G. Environmental stress corrosion of hybrid fibre composites[J]. Com Sci Tech, 1992, 46 (2):257-263.
  • 6Leetham R, Kukureka S N. Stress corrosion of GRP tensile strength members in optical fibre cables[A]. In: The 3rd European Conference on Advanced Materials and Processes[C]. Paris: [s.n.],1993. 1637-1646.
  • 7Frankle R S. Stress corrosion cracking in fibre glass compo-site structures--A case study[J]. Poly & Poly Com, 1998, 6 (5): 269-277.
  • 8Sekine H, Beaumont P W R. On a simple power law for macroscopic crack propagation rate due to stress-corrosion cracking in unidirectional GFRP composites[J]. Mat Sci Eng A,2000, 285: 298-302.
  • 9Ely T, Kumosa M. The stress corrosion experiments on an E-glass/Epoxy unidirectional composite[J]. J Com Mat, 2000, 34 (10): 841-878.
  • 10Bergman G. Stress corrosion failure of FRP structures used for chlorine-dioxide-containing environments in pulp mills[A]. In: 10th International Symposium on Corrosion in the Pulp and Paper Industry[C]. Helsinki, Finland:[s.n.], 2001. 337-361.

同被引文献105

引证文献13

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部