期刊文献+

厂区铁路运输优化仿真关键技术的实现 被引量:1

Realization of Key Technology for Industrial Railway Transportation Optimization Simulation
在线阅读 下载PDF
导出
摘要 在详细分析工业厂区铁路网络特点的基础上,根据Gauss-Seidel迭代法思想,对Floyd算法进行了改进,解决了工业厂区铁路运输优化仿真分析中计算最短路径的核心问题。改进后算法的迭代次数由原来的n次下降到二次,有效降低了计算的复杂度。同时,将折返路径算法融入Floyd算法,很好地解决了铁路运输折返路径问题。 In this paper,an improved Floyd algorithm is proposed,based on GaussSeidel iteration thought and detailed analysis of the characteristics of industrial railway network.The improved Floyd algorithm successfully solved the key issue of the simulation optimization software,which is used to the industrial railway transportation.Using of Seidel iteration thought, the algorithms iteration number is decreased from n to two,which effectively reduced the computational complexity.At the same time,it is a very good solution to the problem of railway angular,because of the using of the railway angular algorithm.
出处 《土木建筑工程信息技术》 2013年第1期109-113,共5页 Journal of Information Technology in Civil Engineering and Architecture
基金 国家自然科学基金项目(51278400) 陕西省教育厅自然科学研究专项项目(11JK0944) 教育部虚拟现实开放实验室项目(MEOBNUEVRA200902)
关键词 FLOYD算法 算法改进 最短路径 工业厂区铁路运输 折返路径 Floyd’s Algorithm Algorithm Improvement Shortest Path Industrial Railway Transportation Return Path
  • 相关文献

参考文献8

二级参考文献44

  • 1周益民,孙世新,田玲.一种实用的所有点对之间最短路径并行算法[J].计算机应用,2005,25(12):2921-2922. 被引量:16
  • 2林澜,闫春钢,蒋昌俊,周向东.动态网络最短路问题的复杂性与近似算法[J].计算机学报,2007,30(4):608-614. 被引量:18
  • 3Floyd RW. Algorithm97(SHORTEST PATH)[J]. Communications of the ACM, 1962.
  • 4Lawler E L. Combinatorial Optimization: Networks and Matrodis[M]//Holt, Rinehart and Winston, 1976.
  • 5Harish P, Narayanan P J. Accelerating large graph algorithms on the GPU using CUDA[C]///Proc. 14th Int'l Conf. High Performance Computing (HiPC'07). Dec. 2007:197-208.
  • 6Okuyama T, Ino F, Hagihara K. A Task Parallel Algorithm for Computing the Costs of All-pairs Shortest Paths on the CUDA Compatible GPU[C]//Proceedings of 2008 IEEE International Symposium on Parallel and Distributed Processing with Applications. IEEE, 2008 : 284-291.
  • 7Katz G J,Kider J T,Jr. All--pairs shortest-paths for large graphs on the GPU[C]//Proe. of the 23rd ACM.
  • 8Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms(Second Edition)[M].The MIT Press,2001.
  • 9Breshears C. The Art of Concurrency[M]. O'Reilly Media, Inc, 2001.
  • 10张树,褚艳利.高性能运算之CUDA[M].北京:中国水利出版社,2009.

共引文献15

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部