Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has prov...Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability.展开更多
With the growing application of intelligent robots in service,manufacturing,and medical fields,efficient and natural interaction between humans and robots has become key to improving collaboration efficiency and user ...With the growing application of intelligent robots in service,manufacturing,and medical fields,efficient and natural interaction between humans and robots has become key to improving collaboration efficiency and user experience.Gesture recognition,as an intuitive and contactless interaction method,can overcome the limitations of traditional interfaces and enable real-time control and feedback of robot movements and behaviors.This study first reviews mainstream gesture recognition algorithms and their application on different sensing platforms(RGB cameras,depth cameras,and inertial measurement units).It then proposes a gesture recognition method based on multimodal feature fusion and a lightweight deep neural network that balances recognition accuracy with computational efficiency.At system level,a modular human-robot interaction architecture is constructed,comprising perception,decision,and execution layers,and gesture commands are transmitted and mapped to robot actions in real time via the ROS communication protocol.Through multiple comparative experiments on public gesture datasets and a self-collected dataset,the proposed method’s superiority is validated in terms of accuracy,response latency,and system robustness,while user-experience tests assess the interface’s usability.The results provide a reliable technical foundation for robot collaboration and service in complex scenarios,offering broad prospects for practical application and deployment.展开更多
Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,...Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance.展开更多
基金partially supported by the National Natural Science Foundation of China(62271485)the SDHS Science and Technology Project(HS2023B044)
文摘Imputation of missing data has long been an important topic and an essential application for intelligent transportation systems(ITS)in the real world.As a state-of-the-art generative model,the diffusion model has proven highly successful in image generation,speech generation,time series modelling etc.and now opens a new avenue for traffic data imputation.In this paper,we propose a conditional diffusion model,called the implicit-explicit diffusion model,for traffic data imputation.This model exploits both the implicit and explicit feature of the data simultaneously.More specifically,we design two types of feature extraction modules,one to capture the implicit dependencies hidden in the raw data at multiple time scales and the other to obtain the long-term temporal dependencies of the time series.This approach not only inherits the advantages of the diffusion model for estimating missing data,but also takes into account the multiscale correlation inherent in traffic data.To illustrate the performance of the model,extensive experiments are conducted on three real-world time series datasets using different missing rates.The experimental results demonstrate that the model improves imputation accuracy and generalization capability.
文摘With the growing application of intelligent robots in service,manufacturing,and medical fields,efficient and natural interaction between humans and robots has become key to improving collaboration efficiency and user experience.Gesture recognition,as an intuitive and contactless interaction method,can overcome the limitations of traditional interfaces and enable real-time control and feedback of robot movements and behaviors.This study first reviews mainstream gesture recognition algorithms and their application on different sensing platforms(RGB cameras,depth cameras,and inertial measurement units).It then proposes a gesture recognition method based on multimodal feature fusion and a lightweight deep neural network that balances recognition accuracy with computational efficiency.At system level,a modular human-robot interaction architecture is constructed,comprising perception,decision,and execution layers,and gesture commands are transmitted and mapped to robot actions in real time via the ROS communication protocol.Through multiple comparative experiments on public gesture datasets and a self-collected dataset,the proposed method’s superiority is validated in terms of accuracy,response latency,and system robustness,while user-experience tests assess the interface’s usability.The results provide a reliable technical foundation for robot collaboration and service in complex scenarios,offering broad prospects for practical application and deployment.
基金funded by National Natural Science Foundation of China(61603245).
文摘Knowledge distillation(KD)is an emerging model compression technique for learning compact object detector models.Previous KD often focused solely on distilling from the logits layer or the feature intermediate layers,which may limit the comprehensive learning of the student network.Additionally,the imbalance between the foreground and background also affects the performance of the model.To address these issues,this paper employs feature-based distillation to enhance the detection performance of the bounding box localization part,and logit-based distillation to improve the detection performance of the category prediction part.Specifically,for the intermediate layer feature distillation,we introduce feature resampling to reduce the risk of the student model merely imitating the teacher model.At the same time,we incorporate a Spatial Attention Mechanism(SAM)to highlight the foreground features learned by the student model.In terms of output layer feature distillation,we divide the traditional distillation targets into target-class objects and non-target-class objects,aiming to improve overall distillation performance.Furthermore,we introduce a one-to-many matching distillation strategy based on Feature Alignment Module(FAM),which further enhances the studentmodel’s feature representation ability,making its feature distribution closer to that of the teacher model,and thus demonstrating superior localization and classification capabilities in object detection tasks.Experimental results demonstrate that our proposedmethodology outperforms conventional distillation techniques in terms of object detecting performance.