This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechani...This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechanical properties of Al-Mg-Mn-Fe-Cu alloys.The findings reveal that the microstructures of the alloys consisted of an Al matrix,Al_(6)(FeMn),and Al_(2)CuMg phase particles.The addition of Fe significantly increased the yield strength(YS),and ultimate tensile strength(UTS)of the alloys,while reducing elongation.The transformation of the 3D morphology of the Al_(6)(FeMn)phase from separated and fine particles with Chinese-script morphology to interconnected rod-like structure as Fe content increased from 0.1%to 0.8%.This strengthening effect was attributed to the slip lines being blocked at the vicinity of the inter-connected Fe-rich phase,leading to grain rotation and dislocation density increment around the Fe-rich phase,ultimately improving the strength of the alloys.However,the Fe-rich phases and Al_(2)CuMg phases were found to be prone to cracking under tensile stress,resulting in decreased elongation of the alloys.This study provides a potential application in the design and manufacturing of new non-heat-treatable Al alloys for the automotive industry.展开更多
The corrosion behavior of the laser powder bed fusion(LPBF)AZ91 magnesium alloy was investigated by comparing its longitudinal and transverse sections with the cast AZ91 alloy.Microstructural analysis revealed a fine,...The corrosion behavior of the laser powder bed fusion(LPBF)AZ91 magnesium alloy was investigated by comparing its longitudinal and transverse sections with the cast AZ91 alloy.Microstructural analysis revealed a fine,homogeneous Mg_(17)Al_(12) distribution in LPBF samples,contrasting with the network-like structure in the cast alloy.Electrochemical and hydrogen evolution tests demonstrated no significant anisotropy in LPBF sections,but they exhibited higher corrosion rates than the cast alloy.Potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that the corrosion process was cathodically controlled by the Mg_(17)Al_(12) phase fraction.Scanning vibrating electrode technique further validated these findings,highlighting lower electrochemical activity in cast AZ91 alloy.展开更多
Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling ...Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling rates was studied and the continuous cooling transformation diagrams were plotted. In order to optimize the heat treatment and improve the mechanical properties, the range of cooling rates leading to a fully bainitic microstructure (without ferrite, pearlite and especially without martensite) was determined. Bainite and martensite transformation start temperatures (Bs, Ms) were also established and compared with the values predicted by empirical equations. The important role of precipitates (especially V carbonitride particles) on final microstructure and mechanical properties was assessed.展开更多
The anticorrosive properties of cerium based conversion coatings deposited on AA6061-T6 alloy by immersion in tmbuffercd cerium chloride and cerium nitrate solutions in the presence of hydrogen peroxide were investiga...The anticorrosive properties of cerium based conversion coatings deposited on AA6061-T6 alloy by immersion in tmbuffercd cerium chloride and cerium nitrate solutions in the presence of hydrogen peroxide were investigated and characterized by potentiodynamic po- larization (PDP) and electrochemical impedance spectroscopy (EIS) in 0.5 mol/L NaCl aqueous solution. The microstructure and chemical composition of the protective films were examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). It was found that the best corrosion protection was afforded by the samples treated during 600 s in cerium chloride solution at pH values ~5.5-4, showing higher amounts of cerium and polarization resistance values greater than 10 f~ m2. Moreover, an ennoblement of the corro- sion potential and decreasing of the cathodic and anodic currents were obtained compared with the cerium nitrate solutions application. This behavior was attributed to the influence of the deposition parameters such as type of the salt anion, i.e., chelating effect and chaotropic characteristics, pH fluctuations in the conversion solution and deposition time.展开更多
The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. Dur...The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.展开更多
The infiuence of small calcium additions on the high-temperature mechanical behaviour in an extruded Mg-6Zn-l Y(wt.%)alloy reinforced by the I-phase has been investigated.Calcium promotes the formation of the intermet...The infiuence of small calcium additions on the high-temperature mechanical behaviour in an extruded Mg-6Zn-l Y(wt.%)alloy reinforced by the I-phase has been investigated.Calcium promotes the formation of the intermetallic Mg6Zn3Ca2 phase instead of 1-phase,which results in a noticeable improvement of the yield strength and ultimate tensile strength of the alloy above 100℃.The strength of the alloys was analysed taking into account the contribution due to the grain size,the crystallographic texture and the volume fraction and nature of second phase particles.In situ synchrotron radiation diffraction experiments have been used to evaluate the load partitioning between the magnesium matrix and the second phase particles(1-and MgeZgCa?phases)in both alloys.The load transfer from the magnesium matrix towards the MgeZihCa?phase is markedly more effective than that for the I-phase over the entire temperature range,especially at 200°C,temperature at which the reinforcement effect of the I-phase is null.展开更多
Metastable austenite plays a critical role in achieving improved combinations of high strength and high ductility/toughness in the design of advanced high-strength steels(AHSS). The thermal stability of metastable aus...Metastable austenite plays a critical role in achieving improved combinations of high strength and high ductility/toughness in the design of advanced high-strength steels(AHSS). The thermal stability of metastable austenite determines the transformation characteristics of AHSS and thus primarily determines the microstructure evolution during complex processes, e.g., the quenching and partitioning process, to achieve the desirable microstructure. This study provides a review of the thermal stability of austenite and its influence on martensitic transformation from both experimental and theoretical modeling perspectives. From the experimental perspective, factors affecting the thermal stability are analyzed,the relative sensitivities are compared, and their corresponding mechanisms are discussed. From the theoretical modeling perspective, the most representative kinetic models that describe athermal and isothermal martensitic transformation are reviewed. The advantages, shortcomings, and applicability of each model are discussed. The systematic review of both experimental and theoretical aspects reveals critical factors in tailoring the stability of metastable austenite and, therefore, provides guidance for the design of advanced steels.展开更多
The paper is partly a review on hydrodynamic and structural aspects of fish farms. In addition, new numerical results are presented on the stochastic behavior of bending stresses in the floater of a realistic net cage...The paper is partly a review on hydrodynamic and structural aspects of fish farms. In addition, new numerical results are presented on the stochastic behavior of bending stresses in the floater of a realistic net cage in extreme wave conditions. The behavior of traditional-type fish farms with net cages and closed fish farms in waves and currents is discussed. Hydroelasticity can play a significant role for net cages and closed membrane-type fish farms. The many meshes in a net cage make CFD and complete structural modeling impracticable. As an example, a hydrodynamic screen model and structural truss elements are instead used to represent the hydrodynamic loading and the structural deformation of the net. In addition, the wake inside the net due to current plays an important role. The described simplified numerical method has been validated by comparing with model tests of mooring loads on a single net cage with two circular elastic floaters and bottom weight ring in waves and currents. It is discussed which parts of the complete system play the most important roles in accurately determining the mooring loads. Many realizations of a sea state are needed to obtain reliable estimates of extreme values in a stochastic sea. In reality, many net cages operate in close vicinity, which raises questions about spatial variations of the current and wave environment as well as hydrodynamic interaction between the net cages. Live fish touching the netting can have a non-negligible influence on the mooring loads. It is demonstrated by numerical calculations in waves and currents that a well boat at a net cage can have a significant influence on the mooring loads and the bending stresses in the floater. The latter results provide a rational way to obtain operational limits for a well boat at a fish farm. Sloshing has to be accounted for in describing the behavior of a closed fish farm when important wave frequencies are in the vicinity of natural sloshing frequencies. The structural flexibility has to be considered in determining the natural sloshing frequencies for a membrane-type closed fish farm. Free-surface non-linearities can matter for sloshing and can, for instance,result in swirling in a certain frequency domain for a closed cage with a vertical symmetry axis.展开更多
This work investigates the effect of solid solution on ductility and on the activation of individual deformation mechanisms at moderate temperatures and at quasi-static strain rates in Mg-Zn and Mg-Al alloys. With tha...This work investigates the effect of solid solution on ductility and on the activation of individual deformation mechanisms at moderate temperatures and at quasi-static strain rates in Mg-Zn and Mg-Al alloys. With that aim, four solid solution Mg-Zn and Mg-Al binary alloy ingots containing 1 and 2 wt.% solute atoms were subjected to hot rolling and subsequent annealing to generate polycrystals with similar average grain size and basal-type texture for each composition. The activity of the different slip systems after tensile testing at 150°C and at 250°C was evaluated in pure Mg and in the alloys by EBSD-assisted slip trace analysis. In addition, segregation of Zn and Al atoms at grain boundaries during the thermo-mechanical processing was characterized by HAADF-STEM and EDX. It was found that while the addition of Al and Zn atoms to pure Mg does not lead to major changes in the mechanical strength at the investigated temperatures, it does enhance ductility significantly, especially at 250℃. Our results show that this increase in ductility cannot be attributed to a higher activation of non-basal systems in the alloys, as reported earlier, as the incidence of non-basal systems is indeed considerably higher in pure Mg. This work suggests, on the contrary, that the ductility increase may be attributed to the presence of a more homogenous basal activity in the alloys due to a lower degree of orientation clustering, to grain boundary solute segregation, and to a higher slip diffusivity at grain interiors.展开更多
Despite improvements in adjuvant therapies for gastric cancer in recent years, the disease is characterized by high recurrence rates and a dismal prognosis. The major improvement in the treatment of recurrent or metas...Despite improvements in adjuvant therapies for gastric cancer in recent years, the disease is characterized by high recurrence rates and a dismal prognosis. The major improvement in the treatment of recurrent or metastatic gastric cancer in recent years has been the incorporation of trastuzumab, a monoclonal antibody that inhibits human epidermal growth factor receptor 2(HER2) heterodimerization, after the demonstrated predictive value of the overexpression and/or amplification of this receptor. Beyond HER2, other genetic abnormalities have been identified, and these mutations may be targetable by tyrosine kinase inhibitors or monoclonal antibodies. The demonstration of four distinct molecular subtypes of gastric cancer by the Cancer Genome Atlas study highlight the enormous heterogeneity of the disease and its complex interplay between genetic and epigenetic alterations and provide a roadmap to implement genome-guided personalized therapy in gastric cancer. In the present review, we aim to discuss, from a clinical point of view, the genomic landscape of gastric cancer described in recent studies, the therapeutic insights derived from these findings, and the clinical trials that have been conducted and those in progress that take into account tailored therapies for gastric cancer.展开更多
The coarse-grained WE54 magnesium alloy was heat treated in order to have minimum hardness minimizing the effects of precipitates and solid solution. Friction stir processing(FSP) was applied in severe conditions to o...The coarse-grained WE54 magnesium alloy was heat treated in order to have minimum hardness minimizing the effects of precipitates and solid solution. Friction stir processing(FSP) was applied in severe conditions to obtain fine, equiaxed and highly misoriented grains, with grain sizes even less than 1 μm. The high severity of processing demonstrated to have a strong impact in the microstructure. Consequently,the processed materials exhibited excellent superplasticity at the high strain rate 10^(-2)s^(-1), and temperatures between 300 and 400 ℃. The maximum tensile superplastic elongation of 756% was achieved at 400 ℃ thanks to the operation of grain boundary sliding mechanism(GBS). Besides the new data obtained through tensile testing, the paper deals with a transcendental question regarding the large differences in strain rate values at a given stress in the superplastic regime at maximum elongation compared to other magnesium-based alloys. With this is mind, 19 magnesium alloys from 22 different investigations were analyzed to give some light to this behavior that never was treated before. It is proposed that this behavior has to be attributed to the accommodation process, necessary for GBS to occur, which is hindered by reinforcing solutes.展开更多
Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
The effect of chemical composition and processing parameters on the formation of acicular ferrite and/or bainite has been investigated.In particular,this paper deals with the influence that N through its combination w...The effect of chemical composition and processing parameters on the formation of acicular ferrite and/or bainite has been investigated.In particular,this paper deals with the influence that N through its combination with V,as V(C,N) precipitates,has on the decomposition of austenite.Likewise,the intragranular nucleation potency of V(C,N) precipitates is analyzed through the continuous cooling transformation diagrams (CCT) of two C-Mn-V steels with different contents of N.Results reported in this work allow us to conclude that acicular ferrite can only be achieved alloying with vanadium and nitrogen,meanwhile bainite is promoted in steels with a low level of nitrogen.It is concluded that higher strength values are obtained in acicular ferrite than in bainitic steel but a similar brittle-ductile transition temperature (BDT),and lower values of impact absorbed energy (KV) has been recorded in nitrogen-rich steel.展开更多
基金support from the Natural Science Foundation of China(Nos.52104373,52074131,and 51974092)the Basic and Applied Basic Foundation of Guangdong Province(No.2020B1515120065)。
文摘This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechanical properties of Al-Mg-Mn-Fe-Cu alloys.The findings reveal that the microstructures of the alloys consisted of an Al matrix,Al_(6)(FeMn),and Al_(2)CuMg phase particles.The addition of Fe significantly increased the yield strength(YS),and ultimate tensile strength(UTS)of the alloys,while reducing elongation.The transformation of the 3D morphology of the Al_(6)(FeMn)phase from separated and fine particles with Chinese-script morphology to interconnected rod-like structure as Fe content increased from 0.1%to 0.8%.This strengthening effect was attributed to the slip lines being blocked at the vicinity of the inter-connected Fe-rich phase,leading to grain rotation and dislocation density increment around the Fe-rich phase,ultimately improving the strength of the alloys.However,the Fe-rich phases and Al_(2)CuMg phases were found to be prone to cracking under tensile stress,resulting in decreased elongation of the alloys.This study provides a potential application in the design and manufacturing of new non-heat-treatable Al alloys for the automotive industry.
基金the financial support under the Project PID2021-126166OB-I00 funded by MCIN/AEI/10.13039/501100011033 and by“ERDF A way of making Europe”(European Union)the Grant CNS2023-144665 funded by MCIN/AEI/10.13039/501100011033+1 种基金by the“European Union NextGenerationEU/PRTR.”the CSIC for the financial support under the project PIE-20216AT012.
文摘The corrosion behavior of the laser powder bed fusion(LPBF)AZ91 magnesium alloy was investigated by comparing its longitudinal and transverse sections with the cast AZ91 alloy.Microstructural analysis revealed a fine,homogeneous Mg_(17)Al_(12) distribution in LPBF samples,contrasting with the network-like structure in the cast alloy.Electrochemical and hydrogen evolution tests demonstrated no significant anisotropy in LPBF sections,but they exhibited higher corrosion rates than the cast alloy.Potentiodynamic polarization and electrochemical impedance spectroscopy confirmed that the corrosion process was cathodically controlled by the Mg_(17)Al_(12) phase fraction.Scanning vibrating electrode technique further validated these findings,highlighting lower electrochemical activity in cast AZ91 alloy.
基金the financial support of Spanish Ministry of Economy and Competitiveness through the project ref.MAT2011-29039-C02-02
文摘Several 35CrMo4 and 38MnV7 steels with different additions of Ti and V were manufactured by electroslag remelting. The influence of the alloying and microalloying elements on phase transformation at different cooling rates was studied and the continuous cooling transformation diagrams were plotted. In order to optimize the heat treatment and improve the mechanical properties, the range of cooling rates leading to a fully bainitic microstructure (without ferrite, pearlite and especially without martensite) was determined. Bainite and martensite transformation start temperatures (Bs, Ms) were also established and compared with the values predicted by empirical equations. The important role of precipitates (especially V carbonitride particles) on final microstructure and mechanical properties was assessed.
基金supported by National Research Network of the National Council for Science and Technology of Mexico (228198)
文摘The anticorrosive properties of cerium based conversion coatings deposited on AA6061-T6 alloy by immersion in tmbuffercd cerium chloride and cerium nitrate solutions in the presence of hydrogen peroxide were investigated and characterized by potentiodynamic po- larization (PDP) and electrochemical impedance spectroscopy (EIS) in 0.5 mol/L NaCl aqueous solution. The microstructure and chemical composition of the protective films were examined by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). It was found that the best corrosion protection was afforded by the samples treated during 600 s in cerium chloride solution at pH values ~5.5-4, showing higher amounts of cerium and polarization resistance values greater than 10 f~ m2. Moreover, an ennoblement of the corro- sion potential and decreasing of the cathodic and anodic currents were obtained compared with the cerium nitrate solutions application. This behavior was attributed to the influence of the deposition parameters such as type of the salt anion, i.e., chelating effect and chaotropic characteristics, pH fluctuations in the conversion solution and deposition time.
基金financial support of the Spanish Ministry of Economy and Competitiveness under project number MAT2016-78850-Rprovision of beamtime at the P07 beamline of the Petra Ⅲ synchrotron facility under the project I-20170054EC。
文摘The load partitioning between the magnesium and titanium phases in an extruded Mg-15%Ti(vol.%) composite from room temperature up to 300 ℃ using synchrotron radiation diffraction during in-situ compression tests. During compression, the magnesium matrix composite deforms mainly by the activation of the extension twinning system up to 200 ℃. The volume fraction of twins increases with the plastic strain but decrease with the compression temperature. Hard titanium particles bear an additional load transferred by the soft magnesium matrix from room temperature up to 300 ℃. This effect is amplified after yield stress during plastic deformation. Additionally, twins within magnesium grains behaves as an additional reinforcement at low temperature(below 200 ℃) inducing an increase in the work hardening of the composite.
基金The authors would like to acknowledge financial support of the Spanish Ministry of Science and Innovation under project number MAT2016-78850-RWe would like to acknowledge the expert support of A.Garcia,A.Tomas and M.Maier for assistance with SEM.The Deutches Elektronen-Synchrotron DESY is acknowledged for the provision of beamtime at the P07 beamline of the PETRA III synchrotron facility in the framework of proposal I-20170054EC.
文摘The infiuence of small calcium additions on the high-temperature mechanical behaviour in an extruded Mg-6Zn-l Y(wt.%)alloy reinforced by the I-phase has been investigated.Calcium promotes the formation of the intermetallic Mg6Zn3Ca2 phase instead of 1-phase,which results in a noticeable improvement of the yield strength and ultimate tensile strength of the alloy above 100℃.The strength of the alloys was analysed taking into account the contribution due to the grain size,the crystallographic texture and the volume fraction and nature of second phase particles.In situ synchrotron radiation diffraction experiments have been used to evaluate the load partitioning between the magnesium matrix and the second phase particles(1-and MgeZgCa?phases)in both alloys.The load transfer from the magnesium matrix towards the MgeZihCa?phase is markedly more effective than that for the I-phase over the entire temperature range,especially at 200°C,temperature at which the reinforcement effect of the I-phase is null.
基金financially supported by the National Natural Science Foundation of China (Nos. 51961130389 and U1808208)the National Key Research and Development Program (No.2017YFB0304402)。
文摘Metastable austenite plays a critical role in achieving improved combinations of high strength and high ductility/toughness in the design of advanced high-strength steels(AHSS). The thermal stability of metastable austenite determines the transformation characteristics of AHSS and thus primarily determines the microstructure evolution during complex processes, e.g., the quenching and partitioning process, to achieve the desirable microstructure. This study provides a review of the thermal stability of austenite and its influence on martensitic transformation from both experimental and theoretical modeling perspectives. From the experimental perspective, factors affecting the thermal stability are analyzed,the relative sensitivities are compared, and their corresponding mechanisms are discussed. From the theoretical modeling perspective, the most representative kinetic models that describe athermal and isothermal martensitic transformation are reviewed. The advantages, shortcomings, and applicability of each model are discussed. The systematic review of both experimental and theoretical aspects reveals critical factors in tailoring the stability of metastable austenite and, therefore, provides guidance for the design of advanced steels.
基金supported by the Research Council of Norway through the Centres of Excellence funding scheme AMOS under Grant No.223254
文摘The paper is partly a review on hydrodynamic and structural aspects of fish farms. In addition, new numerical results are presented on the stochastic behavior of bending stresses in the floater of a realistic net cage in extreme wave conditions. The behavior of traditional-type fish farms with net cages and closed fish farms in waves and currents is discussed. Hydroelasticity can play a significant role for net cages and closed membrane-type fish farms. The many meshes in a net cage make CFD and complete structural modeling impracticable. As an example, a hydrodynamic screen model and structural truss elements are instead used to represent the hydrodynamic loading and the structural deformation of the net. In addition, the wake inside the net due to current plays an important role. The described simplified numerical method has been validated by comparing with model tests of mooring loads on a single net cage with two circular elastic floaters and bottom weight ring in waves and currents. It is discussed which parts of the complete system play the most important roles in accurately determining the mooring loads. Many realizations of a sea state are needed to obtain reliable estimates of extreme values in a stochastic sea. In reality, many net cages operate in close vicinity, which raises questions about spatial variations of the current and wave environment as well as hydrodynamic interaction between the net cages. Live fish touching the netting can have a non-negligible influence on the mooring loads. It is demonstrated by numerical calculations in waves and currents that a well boat at a net cage can have a significant influence on the mooring loads and the bending stresses in the floater. The latter results provide a rational way to obtain operational limits for a well boat at a fish farm. Sloshing has to be accounted for in describing the behavior of a closed fish farm when important wave frequencies are in the vicinity of natural sloshing frequencies. The structural flexibility has to be considered in determining the natural sloshing frequencies for a membrane-type closed fish farm. Free-surface non-linearities can matter for sloshing and can, for instance,result in swirling in a certain frequency domain for a closed cage with a vertical symmetry axis.
基金funding from the Madrid region under programme S2018/NMT4381-MAT4.0-CM projectFunding from projects PID2019111285RB-I00 and PID2020-118626RB-I00 awarded by the Spanish Ministry of Science, Innovation and Universitiesfinancial support from the China Scholarship Council (Grant no 201706050154)
文摘This work investigates the effect of solid solution on ductility and on the activation of individual deformation mechanisms at moderate temperatures and at quasi-static strain rates in Mg-Zn and Mg-Al alloys. With that aim, four solid solution Mg-Zn and Mg-Al binary alloy ingots containing 1 and 2 wt.% solute atoms were subjected to hot rolling and subsequent annealing to generate polycrystals with similar average grain size and basal-type texture for each composition. The activity of the different slip systems after tensile testing at 150°C and at 250°C was evaluated in pure Mg and in the alloys by EBSD-assisted slip trace analysis. In addition, segregation of Zn and Al atoms at grain boundaries during the thermo-mechanical processing was characterized by HAADF-STEM and EDX. It was found that while the addition of Al and Zn atoms to pure Mg does not lead to major changes in the mechanical strength at the investigated temperatures, it does enhance ductility significantly, especially at 250℃. Our results show that this increase in ductility cannot be attributed to a higher activation of non-basal systems in the alloys, as reported earlier, as the incidence of non-basal systems is indeed considerably higher in pure Mg. This work suggests, on the contrary, that the ductility increase may be attributed to the presence of a more homogenous basal activity in the alloys due to a lower degree of orientation clustering, to grain boundary solute segregation, and to a higher slip diffusivity at grain interiors.
基金Supported by Fundacao Waldemar Barnsley Pessoa,Brazil
文摘Despite improvements in adjuvant therapies for gastric cancer in recent years, the disease is characterized by high recurrence rates and a dismal prognosis. The major improvement in the treatment of recurrent or metastatic gastric cancer in recent years has been the incorporation of trastuzumab, a monoclonal antibody that inhibits human epidermal growth factor receptor 2(HER2) heterodimerization, after the demonstrated predictive value of the overexpression and/or amplification of this receptor. Beyond HER2, other genetic abnormalities have been identified, and these mutations may be targetable by tyrosine kinase inhibitors or monoclonal antibodies. The demonstration of four distinct molecular subtypes of gastric cancer by the Cancer Genome Atlas study highlight the enormous heterogeneity of the disease and its complex interplay between genetic and epigenetic alterations and provide a roadmap to implement genome-guided personalized therapy in gastric cancer. In the present review, we aim to discuss, from a clinical point of view, the genomic landscape of gastric cancer described in recent studies, the therapeutic insights derived from these findings, and the clinical trials that have been conducted and those in progress that take into account tailored therapies for gastric cancer.
基金Financial support from MINECO (Spain), Project MAT2015–68919-C3–1-R (MINECO/FEDER)CENIM, CSIC, for a contract funded by the aforementioned projectMINECO for a FPI fellowship, number BES2013–063963 (MINECO/FEDER/ESF)。
文摘The coarse-grained WE54 magnesium alloy was heat treated in order to have minimum hardness minimizing the effects of precipitates and solid solution. Friction stir processing(FSP) was applied in severe conditions to obtain fine, equiaxed and highly misoriented grains, with grain sizes even less than 1 μm. The high severity of processing demonstrated to have a strong impact in the microstructure. Consequently,the processed materials exhibited excellent superplasticity at the high strain rate 10^(-2)s^(-1), and temperatures between 300 and 400 ℃. The maximum tensile superplastic elongation of 756% was achieved at 400 ℃ thanks to the operation of grain boundary sliding mechanism(GBS). Besides the new data obtained through tensile testing, the paper deals with a transcendental question regarding the large differences in strain rate values at a given stress in the superplastic regime at maximum elongation compared to other magnesium-based alloys. With this is mind, 19 magnesium alloys from 22 different investigations were analyzed to give some light to this behavior that never was treated before. It is proposed that this behavior has to be attributed to the accommodation process, necessary for GBS to occur, which is hindered by reinforcing solutes.
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金VANITECthe Spanish Ministerio de Ciencia e Innovacion for their financial support
文摘The effect of chemical composition and processing parameters on the formation of acicular ferrite and/or bainite has been investigated.In particular,this paper deals with the influence that N through its combination with V,as V(C,N) precipitates,has on the decomposition of austenite.Likewise,the intragranular nucleation potency of V(C,N) precipitates is analyzed through the continuous cooling transformation diagrams (CCT) of two C-Mn-V steels with different contents of N.Results reported in this work allow us to conclude that acicular ferrite can only be achieved alloying with vanadium and nitrogen,meanwhile bainite is promoted in steels with a low level of nitrogen.It is concluded that higher strength values are obtained in acicular ferrite than in bainitic steel but a similar brittle-ductile transition temperature (BDT),and lower values of impact absorbed energy (KV) has been recorded in nitrogen-rich steel.