期刊文献+

Insight into the Fe-rich phases strengthening mechanisms of non-heat-treatable Al-Mg-Mn-Fe-Cu alloys 被引量:1

原文传递
导出
摘要 This paper examines the effect of Fe addition on the microstructure characterized by scanning electron microscopy/electron backscattered diffraction,neutron diffraction,and synchrotron X-ray tomography and the mechanical properties of Al-Mg-Mn-Fe-Cu alloys.The findings reveal that the microstructures of the alloys consisted of an Al matrix,Al_(6)(FeMn),and Al_(2)CuMg phase particles.The addition of Fe significantly increased the yield strength(YS),and ultimate tensile strength(UTS)of the alloys,while reducing elongation.The transformation of the 3D morphology of the Al_(6)(FeMn)phase from separated and fine particles with Chinese-script morphology to interconnected rod-like structure as Fe content increased from 0.1%to 0.8%.This strengthening effect was attributed to the slip lines being blocked at the vicinity of the inter-connected Fe-rich phase,leading to grain rotation and dislocation density increment around the Fe-rich phase,ultimately improving the strength of the alloys.However,the Fe-rich phases and Al_(2)CuMg phases were found to be prone to cracking under tensile stress,resulting in decreased elongation of the alloys.This study provides a potential application in the design and manufacturing of new non-heat-treatable Al alloys for the automotive industry.
出处 《Journal of Materials Science & Technology》 2025年第2期232-246,共15页 材料科学技术(英文版)
基金 support from the Natural Science Foundation of China(Nos.52104373,52074131,and 51974092) the Basic and Applied Basic Foundation of Guangdong Province(No.2020B1515120065)。
  • 相关文献

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部