Inspired by Eugene Nida's dynamic equivalence theory,this thesis takes the translation of Samul Ullman's work Youth as a case study.It explores the three translated versions of Mrs.Zhang Aiqing,Mr.Huang Ren an...Inspired by Eugene Nida's dynamic equivalence theory,this thesis takes the translation of Samul Ullman's work Youth as a case study.It explores the three translated versions of Mrs.Zhang Aiqing,Mr.Huang Ren and Mr.Xu Hanlin respectively.These versions are analyzed at the levels of lexicology,syntax,rhetoric,semasiology and style.Then it points out that the same effect on the target language readers are as the original text has done on the source language readers,in other words,it proves the efficiency of dynamic equivalence in the translation of Youth.展开更多
Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microgl...Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.展开更多
Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen...Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen,and essential nutrients to brain tissues.This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death.Recent studies have clarified the multifactorial pathogenesis of ischemic stroke,highlighting the roles of energy failure,excitotoxicity,oxidative stress,neuroinflammation,and apoptosis.This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke.Additionally,we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke,including the interplay of apoptosis,autophagy,pyroptosis,ferroptosis,and necrosis,which collectively influence neuronal fate.We also discussed advancements in neuroprotective therapeutics,encompassing a range of interventions from pharmacological modulation to stem cell-based therapies,aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke.Despite these advancements,challenges remain in translating mechanistic insights into effective clinical therapies.Although neuroprotective strategies have shown promise in preclinical models,their efficacy in human trials has been inconsistent,often due to the complex pathology of ischemic stroke and the timing of interventions.In conclusion,this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia.It sheds light on cutting-edge advancements in potential neuroprotective therapeutics,underscores the promise of regenerative medicine,and offers a forward-looking perspective on potential clinical breakthroughs.The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes.展开更多
Alzheimer’s disease is a multi-amyloidosis disease characterized by amyloid-βdeposits in brain blood vessels,microaneurysms,and senile plaques.How amyloid-βdeposition affects axon pathology has not been examined ex...Alzheimer’s disease is a multi-amyloidosis disease characterized by amyloid-βdeposits in brain blood vessels,microaneurysms,and senile plaques.How amyloid-βdeposition affects axon pathology has not been examined extensively.We used immunohistochemistry and immunofluorescence staining to analyze the forebrain tissue slices of Alzheimer’s disease patients.Widespread axonal amyloidosis with distinctive axonal enlargement was observed in patients with Alzheimer’s disease.On average,amyloid-β-positive axon diameters in Alzheimer’s disease brains were 1.72 times those of control brain axons.Furthermore,axonal amyloidosis was associated with microtubule-associated protein 2 reduction,tau phosphorylation,lysosome destabilization,and several blood-related markers,such as apolipoprotein E,alpha-hemoglobin,glycosylated hemoglobin type A1C,and hemin.Lysosome destabilization in Alzheimer’s disease was also clearly identified in the neuronal soma,where it was associated with the co-expression of amyloid-β,Cathepsin D,alpha-hemoglobin,actin alpha 2,and collagen type IV.This suggests that exogenous hemorrhagic protein intake influences neural lysosome stability.Additionally,the data showed that amyloid-β-containing lysosomes were 2.23 times larger than control lysosomes.Furthermore,under rare conditions,axonal breakages were observed,which likely resulted in Wallerian degeneration.In summary,axonal enlargement associated with amyloidosis,micro-bleeding,and lysosome destabilization is a major defect in patients with Alzheimer’s disease.This finding suggests that,in addition to the well-documented neural soma and synaptic damage,axonal damage is a key component of neuronal defects in Alzheimer’s disease.展开更多
Alzheimer’s disease(AD)is the most common form of dementia characterized pathologically by the deposition of amyloid plaques and hyperphosphorylated tau containing neurofibrillary tangles.The disease presents clinica...Alzheimer’s disease(AD)is the most common form of dementia characterized pathologically by the deposition of amyloid plaques and hyperphosphorylated tau containing neurofibrillary tangles.The disease presents clinically with progressive memory loss and disruption of cognitive function.Currently,there is no cure for AD;recent advances in the therapeutics aimed at clearing the amyloid protein from the brain have led to potential disease stabilization,however,this does not prevent eventual disease progression(Cummings et al.,2024).展开更多
GNAO1-associated disorder is a rare disease and an example of developmental and epileptic encephalopathies.Caused by ca.150 different dominant missense mutations in the gene encoding the major neuronal G protein Gao,i...GNAO1-associated disorder is a rare disease and an example of developmental and epileptic encephalopathies.Caused by ca.150 different dominant missense mutations in the gene encoding the major neuronal G protein Gao,it spans a wide range of neurological clinical manifestations,that may include epileptic seizures,motor dysfunctions,developmental and intellectual delay,and other symptoms(Sáez González et al.,2023).展开更多
Schizophrenia is a complex psychiatric disorder marked by positive and negative symptoms,leading to mood disturbances,cognitive impairments,and social withdrawal.While anti-psychotic medications remain the cornerstone...Schizophrenia is a complex psychiatric disorder marked by positive and negative symptoms,leading to mood disturbances,cognitive impairments,and social withdrawal.While anti-psychotic medications remain the cornerstone of treatment,they often fail to fully address certain symptoms.Additionally,treatment-resistant schizophrenia,affecting 30%-40%of patients,remains a substantial clinical challenge.Positive,negative symptoms and cognitive impairments have been linked to disruptions in the glutamatergic,serotonin,GABAergic,and muscarinic pathways in the brain.Recent advances using genome-wide association study and other approaches have uncovered a significant number of new schizophrenia risk genes that uncovered new,and reinforced prior,concepts on the genetic and neurological underpinnings of schizophrenia,including abnormalities in synaptic function,immune processes,and lipid metabolism.Concurrently,new therapeutics targeting different modalities,which are expected to address some of the limitations of anti-psychotic drugs currently being offered to patients,are currently being evaluated.Collectively,these efforts provide new momentum for the next phase of schizophrenia research and treatment.展开更多
Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immun...Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.展开更多
The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR...The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR.However,their clinical translation is hindered by their inherently low immunogenicity,often requiring potent adjuvants and advanced delivery systems.Biomembrane nanostructures(e.g.,liposomes,exosomes,and cell membrane-derived nanostructures),characterized by superior biocompatibility,intrinsic targeting ability,and immune-modulating properties,could serve as versatile platforms that potentiate vaccine efficacy by increasing antigen stability,enabling codelivery of immunostimulants,and facilitating targeted delivery to lymphoid tissues/antigen-presenting cells.This intrinsic immunomodulation promotes robust humoral and cellular immune responses to combat bacteria.This review critically reviews(1)key biomembrane nanostructure classes for bacterial protein antigens,(2)design strategies leveraging biomembrane nanostructures to enhance humoral and cellular immune responses,(3)preclinical efficacy against diverse pathogens,and(4)translational challenges and prospects.Biomembrane nanostructure-driven approaches represent a paradigm shift in the development of next-generation bacterial protein vaccines against resistant infections.展开更多
Ischemic stroke is a serious medical event that cannot be predicted in advance and can have longlasting effects on patients,families,and communities.A deeper understanding of the changes in gene expression and the fun...Ischemic stroke is a serious medical event that cannot be predicted in advance and can have longlasting effects on patients,families,and communities.A deeper understanding of the changes in gene expression and the fundamental molecular mechanisms involved could help address this critical issue.In recent years,research into regulatory long non-coding(lnc)RNAs,a diverse group of RNA molecules with regulatory functions,has emerged as a promising direction in the study of cerebral infarction.This review paper aims to provide a comprehensive exploration of the roles of regulatory lncRNAs in cerebral infarction,as well as potential strategies for their application in clinical settings.LncRNAs have the potential to act as“sponges”that attract specific microRNAs,thereby regulating the expression of microRNA target genes.These interactions influence various aspects of ischemic stroke,including reperfusion-induced damage,cell death,immune responses,autophagy,angiogenesis,and the generation of reactive oxygen species.We highlight several regulatory lncRNAs that have been utilized in animal model treatments,including lncRNA NKILA,lncRNA Meg8,and lncRNA H19.Additionally,we discuss lncRNAs that have been used as biomarkers for the diagnosis and prognosis of cerebral infarction,such as lncRNA FOXO3,lncRNA XIST,and lncRNA RMST.The lncRNAs hold potential for genetic-level treatments in patients.However,numerous challenges,including inefficiency,low targeting accuracy,and side effects observed in preliminary studies,indicate the need for thorough investigation.The application of lncRNAs in ischemic stroke presents challenges that require careful and extensive validation.展开更多
AIM:To compare the tear film quantity and stability parameters in keratoconus(KCN)and normal eyes using test breakup time(TBUT),noninvasive TBUT(NITBUT),and Schirmer test.METHODS:All participants(n=166),including pati...AIM:To compare the tear film quantity and stability parameters in keratoconus(KCN)and normal eyes using test breakup time(TBUT),noninvasive TBUT(NITBUT),and Schirmer test.METHODS:All participants(n=166),including patients with KCN and age-matched healthy individuals with normal corneas,were recruited from those referred to Farabi Eye Hospital,Iran,in 2023.To better account for genetic and environmental factors,the control group comprised healthy individuals who were relatives of KCN patients and had normal corneal topography.Tear quantity parameters were evaluated in the following order:NITBUT,TBUT,and Schirmer tests.RESULTS:The mean age of cases in KCN(61.7%males)and normal(63.5%males)participants was 27.54±5.44y(range 19 to 38)and 27.52±5.63y(range 20 to 38),respectively(P=0.976).NIBUT,TBUT,and Schirmer’s tests were significantly lower in KCN group compared to normal controls(all P<0.001).The mean difference for NIBUT was-7.81s(P<0.001),and for TBUT was-7.61s(P<0.001).Schirmer test values were also significantly lower in the KCN group,with a mean difference of-5.61 mm compared to normal people(P<0.001).CONCLUSION:Our findings demonstrate significant tear film impairment in KCN.The reductions in NIBUT,TBUT and Schirmer scores highlight an underlying tear film dysfunction in KCN that extends beyond the morphological changes of the cornea.展开更多
Complex genetic relationships between neurodegenerative disorders and neuropsychiatric symptoms have been shown, suggesting shared pathogenic mechanisms and emphasizing the potential for developing common therapeutic ...Complex genetic relationships between neurodegenerative disorders and neuropsychiatric symptoms have been shown, suggesting shared pathogenic mechanisms and emphasizing the potential for developing common therapeutic targets. Apolipoprotein E(APOE) genotypes and their corresponding protein(Apo E) isoforms may influence the biophysical properties of the cell membrane lipid bilayer. However, the role of APOE in central nervous system pathophysiology extended beyond its lipid transport function. In the present review article, we analyzed the links existing between APOE genotypes and the neurobiology of neuropsychiatric symptoms in neurodegenerative and vascular diseases. APOE genotypes(APOE ε2, APOE ε3, and APOE ε4) were implicated in common mechanisms underlying a wide spectrum of neurodegenerative diseases, including sporadic Alzheimer's disease, synucleinopathies such as Parkinson's disease and Lewy body disease, stroke, and traumatic brain injury. These shared pathways often involved neuroinflammation, abnormal protein accumulation, or responses to acute detrimental events. Across these conditions, APOE variants are believed to contribute to the modulation of inflammatory responses, the regulation of amyloid and tau pathology, as well as the clearance of proteins such as α-synuclein. The bidirectional interactions among Apo E, amyloid and mitochondrial metabolism, immunomodulatory effects, neuronal repair, and remodeling underscored the complexity of Apo E's role in neuropsychiatric symptoms associated with these conditions since from early phases of cognitive impairment such as mild cognitive impairment and mild behavioral impairment. Besides Apo E-specific isoforms' link to increased neuropsychiatric symptoms in Alzheimer's disease(depression, psychosis, aberrant motor behaviors, and anxiety, not apathy), the APOE ε4 genotype was also considered a significant genetic risk factor for Lewy body disease and its worse cognitive outcomes. Conversely, the APOE ε2 variant has been observed not to exert a protective effect equally in all neurodegenerative diseases. Specifically, in Lewy body disease, this variant may delay disease onset, paralleling its protective role in Alzheimer's disease, although its role in frontotemporal dementia is uncertain. The APOE ε4 genotype has been associated with adverse cognitive outcomes across other various neurodegenerative conditions. In Parkinson's disease, the APOE ε4 allele significantly impacted cognitive performance, increasing the risk of developing dementia, even in cases of pure synucleinopathies with minimal co-pathology from Alzheimer's disease. Similarly, in traumatic brain injury, recovery rates varied, with APOE ε4 carriers demonstrating a greater risk of poor long-term cognitive outcomes and elevated levels of neuropsychiatric symptoms. Furthermore, APOE ε4 influenced the age of onset and severity of stroke, as well as the likelihood of developing stroke-associated dementia, potentially due to its role in compromising endothelial integrity and promoting blood–brain barrier dysfunction.展开更多
Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease indu...Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.展开更多
Neural injuries can cause considerable functional impairments,and both central and peripheral nervous systems have limited regenerative capacity.The existing conventional pharmacological treatments in clinical practic...Neural injuries can cause considerable functional impairments,and both central and peripheral nervous systems have limited regenerative capacity.The existing conventional pharmacological treatments in clinical practice show poor targeting,rapid drug clearance from the circulatory system,and low therapeutic efficiency.Therefore,in this review,we have first described the mechanisms underlying nerve regeneration,characterized the biomaterials used for drug delivery to facilitate nerve regeneration,and highlighted the functionalization strategies used for such drug-delivery systems.These systems mainly use natural and synthetic polymers,inorganic materials,and hybrid systems with advanced drug-delivery abilities,including nanoparticles,hydrogels,and scaffoldbased systems.Then,we focused on comparing the types of drug-delivery systems for neural regeneration as well as the mechanisms and challenges associated with targeted delivery of drugs to facilitate neural regeneration.Finally,we have summarized the clinical application research and limitations of targeted delivery of these drugs.These biomaterials and drug-delivery systems can provide mechanical support,sustained release of bioactive molecules,and enhanced intercellular contact,ultimately reducing cell apoptosis and enhancing functional recovery.Nevertheless,immune reactions,degradation regulation,and clinical translations remain major unresolved challenges.Future studies should focus on optimizing biomaterial properties,refining delivery precision,and overcoming translational barriers to advance these technologies toward clinical applications.展开更多
Rhegmatogenous retinal detachment(RRD)is a serious ocular condition marked by the separation of the neuroretina from the retinal pigment epithelium(RPE).The pathogenesis of RRD involves intricate molecular and cellula...Rhegmatogenous retinal detachment(RRD)is a serious ocular condition marked by the separation of the neuroretina from the retinal pigment epithelium(RPE).The pathogenesis of RRD involves intricate molecular and cellular mechanisms,including inflammation,cell migration,and the activation of proliferative signaling pathways.One of the most challenging complications of RRD is proliferative vitreoretinopathy(PVR),which refers to the proliferation and contraction of fibrocellular membranes on the retinal surface and in the vitreous cavity.PVR is a major cause of surgical failure in RRD,as it can lead to recurrent retinal detachment and severe vision loss.However,the pathogenesis of PVR is not yet fully understood,and the treatment options are quite limited.Recent advances in analytical techniques have offered valuable insights into the molecular alterations present in the subretinal fluid(SRF)of patients with RRD.This review seeks to consolidate the current knowledge regarding the SRF profile in RRD and PVR,emphasizing potential biomarkers and therapeutic targets.展开更多
Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparame...Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.展开更多
Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival a...Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.Here,we investigated whether modifying the intrinsic properties of neural stem cells could enhance their integration post-transplantation.We focused on phosphatase and tensin homolog(PTEN),a well-characterized tumor suppressor known to critically regulate neuronal survival and axonal regeneration.By deleting Pten in mouse neural stem cells,we observed increased neurite outgrowth and enhanced resistance to neurotoxic environments in culture.Upon transplantation into injured spinal cords,Pten-deficient neural stem cells exhibited higher survival and more extensive rostrocaudal distribution.To examine the potential influence of partial PTEN suppression,rat neural stem cells were treated with short hairpin RNA targeting PTEN,and the PTEN knockdown resulted in significant improvements in neurite growth,survival,and neurosphere motility in vitro.Transplantation of sh PTEN-treated neural stem cells into the injured spinal cord also led to an increase in graft survival and migration to an extent similar to that of complete deletion.Moreover,PTEN suppression facilitated neurite elongation from NSC-derived neurons migrating from the lesion epicenter.These findings suggest that modifying intrinsic signaling pathways,such as PTEN,within neural stem cells could bolster their therapeutic efficacy,offering potential avenues for future regenerative strategies for spinal cord injury.展开更多
Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological change...Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.展开更多
Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at th...Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at the molecular,cellular,and neural circuit levels.Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits.The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy.Therefore,this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies,including electroencephalography,magnetic resonance imaging,optogenetics,chemogenetics,deep brain stimulation,and brain-computer interfaces.Additionally,this review discusses these mechanisms from three perspectives:structural,synaptic,and transmitter circuits.The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures,interactions within the same structure,and the maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels.These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment.展开更多
α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively dete...α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.展开更多
文摘Inspired by Eugene Nida's dynamic equivalence theory,this thesis takes the translation of Samul Ullman's work Youth as a case study.It explores the three translated versions of Mrs.Zhang Aiqing,Mr.Huang Ren and Mr.Xu Hanlin respectively.These versions are analyzed at the levels of lexicology,syntax,rhetoric,semasiology and style.Then it points out that the same effect on the target language readers are as the original text has done on the source language readers,in other words,it proves the efficiency of dynamic equivalence in the translation of Youth.
基金supported by the Natural Science Foundation of Yunnan Province,No.202401AS070086(to ZW)the National Key Research and Development Program of China,No.2018YFA0801403(to ZW)+1 种基金Yunnan Science and Technology Talent and Platform Plan,No.202105AC160041(to ZW)the Natural Science Foundation of China,No.31960120(to ZW)。
文摘Traumatic brain injury can be categorized into primary and secondary injuries.Secondary injuries are the main cause of disability following traumatic brain injury,which involves a complex multicellular cascade.Microglia play an important role in secondary injury and can be activated in response to traumatic brain injury.In this article,we review the origin and classification of microglia as well as the dynamic changes of microglia in traumatic brain injury.We also clarify the microglial polarization pathways and the therapeutic drugs targeting activated microglia.We found that regulating the signaling pathways involved in pro-inflammatory and anti-inflammatory microglia,such as the Toll-like receptor 4/nuclear factor-kappa B,mitogen-activated protein kinase,Janus kinase/signal transducer and activator of transcription,phosphoinositide 3-kinase/protein kinase B,Notch,and high mobility group box 1 pathways,can alleviate the inflammatory response triggered by microglia in traumatic brain injury,thereby exerting neuroprotective effects.We also reviewed the strategies developed on the basis of these pathways,such as drug and cell replacement therapies.Drugs that modulate inflammatory factors,such as rosuvastatin,have been shown to promote the polarization of antiinflammatory microglia and reduce the inflammatory response caused by traumatic brain injury.Mesenchymal stem cells possess anti-inflammatory properties,and clinical studies have confirmed their significant efficacy and safety in patients with traumatic brain injury.Additionally,advancements in mesenchymal stem cell-delivery methods—such as combinations of novel biomaterials,genetic engineering,and mesenchymal stem cell exosome therapy—have greatly enhanced the efficiency and therapeutic effects of mesenchymal stem cells in animal models.However,numerous challenges in the application of drug and mesenchymal stem cell treatment strategies remain to be addressed.In the future,new technologies,such as single-cell RNA sequencing and transcriptome analysis,can facilitate further experimental studies.Moreover,research involving non-human primates can help translate these treatment strategies to clinical practice.
基金supported by the National Natural Science Foundation of China,Nos.82171387 and 31830111(both to SL).
文摘Stroke,particularly ischemic stroke,is the leading cause of long-term disability and mortality worldwide.It occurs due to the occlusion of the cerebral arteries,which significantly reduces the delivery of blood,oxygen,and essential nutrients to brain tissues.This deprivation triggers a cascade of cellular events that ultimately leads to neuronal death.Recent studies have clarified the multifactorial pathogenesis of ischemic stroke,highlighting the roles of energy failure,excitotoxicity,oxidative stress,neuroinflammation,and apoptosis.This review aimed to provide a comprehensive insight into the fundamental mechanisms driving neuronal death triggered by ischemia and to examine the progress of neuroprotective therapeutic approaches designed to mitigate neuronal loss and promote neurological recovery after a stroke.Additionally,we explored widely accepted findings regarding the potential pathways implicated in neuronal death during ischemic stroke,including the interplay of apoptosis,autophagy,pyroptosis,ferroptosis,and necrosis,which collectively influence neuronal fate.We also discussed advancements in neuroprotective therapeutics,encompassing a range of interventions from pharmacological modulation to stem cell-based therapies,aimed at reducing neuronal injury and enhancing functional recovery following ischemic stroke.Despite these advancements,challenges remain in translating mechanistic insights into effective clinical therapies.Although neuroprotective strategies have shown promise in preclinical models,their efficacy in human trials has been inconsistent,often due to the complex pathology of ischemic stroke and the timing of interventions.In conclusion,this review synthesizes mechanistic insights into the intricate interplay of molecular and cellular pathways driving neuronal death post-ischemia.It sheds light on cutting-edge advancements in potential neuroprotective therapeutics,underscores the promise of regenerative medicine,and offers a forward-looking perspective on potential clinical breakthroughs.The ongoing evolution of precision-targeted interventions is expected to significantly enhance preventative strategies and improve clinical outcomes.
基金supported by the National Natural Science Foundation of China,No.81472235(to HF)the Shanghai Jiao Tong University Medical and Engineering Project,Nos.YG2021QN53(to HF),YG2017MS71(to HF)+1 种基金the International Cooperation Project of the National Natural Science Foundation of China,No.82020108017(to DC)the Innovation Group Project of the National Natural Science Foundation of China,No.81921002(to DC).
文摘Alzheimer’s disease is a multi-amyloidosis disease characterized by amyloid-βdeposits in brain blood vessels,microaneurysms,and senile plaques.How amyloid-βdeposition affects axon pathology has not been examined extensively.We used immunohistochemistry and immunofluorescence staining to analyze the forebrain tissue slices of Alzheimer’s disease patients.Widespread axonal amyloidosis with distinctive axonal enlargement was observed in patients with Alzheimer’s disease.On average,amyloid-β-positive axon diameters in Alzheimer’s disease brains were 1.72 times those of control brain axons.Furthermore,axonal amyloidosis was associated with microtubule-associated protein 2 reduction,tau phosphorylation,lysosome destabilization,and several blood-related markers,such as apolipoprotein E,alpha-hemoglobin,glycosylated hemoglobin type A1C,and hemin.Lysosome destabilization in Alzheimer’s disease was also clearly identified in the neuronal soma,where it was associated with the co-expression of amyloid-β,Cathepsin D,alpha-hemoglobin,actin alpha 2,and collagen type IV.This suggests that exogenous hemorrhagic protein intake influences neural lysosome stability.Additionally,the data showed that amyloid-β-containing lysosomes were 2.23 times larger than control lysosomes.Furthermore,under rare conditions,axonal breakages were observed,which likely resulted in Wallerian degeneration.In summary,axonal enlargement associated with amyloidosis,micro-bleeding,and lysosome destabilization is a major defect in patients with Alzheimer’s disease.This finding suggests that,in addition to the well-documented neural soma and synaptic damage,axonal damage is a key component of neuronal defects in Alzheimer’s disease.
基金funded by Wellcome 4ward North(Ref:216340/Z/19/Z)ARUK Yorkshire Network Centre Small Grant Scheme,ARUK Preparatory Clinical Fellowship scheme(Ref:ARUK-PCRF2016A-1)+3 种基金Academy of Medical Sciences Starter Grants for Clinical Lecturers Scheme(Ref:SGL028\1097),Parkinson’s UK(Ref:F1301)Michael J Fox Foundation(Ref:005021),Australian Research Council(CE200100012)European Union Seventh Framework Programme(Ref:FP7/2007-2013)under grant agreement no.601055the NIHR Sheffield Biomedical Research Centre award(NIHR 203321)(to SMB).
文摘Alzheimer’s disease(AD)is the most common form of dementia characterized pathologically by the deposition of amyloid plaques and hyperphosphorylated tau containing neurofibrillary tangles.The disease presents clinically with progressive memory loss and disruption of cognitive function.Currently,there is no cure for AD;recent advances in the therapeutics aimed at clearing the amyloid protein from the brain have led to potential disease stabilization,however,this does not prevent eventual disease progression(Cummings et al.,2024).
文摘GNAO1-associated disorder is a rare disease and an example of developmental and epileptic encephalopathies.Caused by ca.150 different dominant missense mutations in the gene encoding the major neuronal G protein Gao,it spans a wide range of neurological clinical manifestations,that may include epileptic seizures,motor dysfunctions,developmental and intellectual delay,and other symptoms(Sáez González et al.,2023).
基金supported by the Ministry of Health National Medical Research Council (to JL)the National University of Singapore (to JJEC)
文摘Schizophrenia is a complex psychiatric disorder marked by positive and negative symptoms,leading to mood disturbances,cognitive impairments,and social withdrawal.While anti-psychotic medications remain the cornerstone of treatment,they often fail to fully address certain symptoms.Additionally,treatment-resistant schizophrenia,affecting 30%-40%of patients,remains a substantial clinical challenge.Positive,negative symptoms and cognitive impairments have been linked to disruptions in the glutamatergic,serotonin,GABAergic,and muscarinic pathways in the brain.Recent advances using genome-wide association study and other approaches have uncovered a significant number of new schizophrenia risk genes that uncovered new,and reinforced prior,concepts on the genetic and neurological underpinnings of schizophrenia,including abnormalities in synaptic function,immune processes,and lipid metabolism.Concurrently,new therapeutics targeting different modalities,which are expected to address some of the limitations of anti-psychotic drugs currently being offered to patients,are currently being evaluated.Collectively,these efforts provide new momentum for the next phase of schizophrenia research and treatment.
基金supported by the National Natural Science Foundation of China(Nos.82573045,82460602,82560459)the Hainan Provincial Graduate Student Innovative Research Project(No.Qhys2024-440).
文摘Post-translational modifications(PTMs)regulate the occurrence and development of cancer,and lactylation modification is a new form of PTMs.Recent studies have found that lactic acid modification can regulate the immune tolerance of cancer cells.The classical theory holds that prostate apoptosis response-4(PAR-4)is a tumor suppressor protein.However,our recent research has found that PAR-4 has a biological function of promoting cancer in hepatocellular carcinoma(HCC),and our analysis shows that PAR-4 can be modified of lactic acid.These research evidences suggest that PAR-4 lactylation modification may drive immune tolerance in HCC.Therefore,inhibiting PAR-4 lactylation modification is very likely to increase the sensitivity of HCC to immunotherapy.
基金the National Natural Science Foundation of China(82573571)the Shanghai 2025 Basic Research Plan Natural Science Foundation(25ZR1401393)the First Batch of Open Topics of the Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices(2025QN13)。
文摘The global burden of bacterial infections,exacerbated by antimicrobial resistance(AMR),necessitates innovative strategies.Bacterial protein vaccines offer promise by eliciting targeted immunity while circumventing AMR.However,their clinical translation is hindered by their inherently low immunogenicity,often requiring potent adjuvants and advanced delivery systems.Biomembrane nanostructures(e.g.,liposomes,exosomes,and cell membrane-derived nanostructures),characterized by superior biocompatibility,intrinsic targeting ability,and immune-modulating properties,could serve as versatile platforms that potentiate vaccine efficacy by increasing antigen stability,enabling codelivery of immunostimulants,and facilitating targeted delivery to lymphoid tissues/antigen-presenting cells.This intrinsic immunomodulation promotes robust humoral and cellular immune responses to combat bacteria.This review critically reviews(1)key biomembrane nanostructure classes for bacterial protein antigens,(2)design strategies leveraging biomembrane nanostructures to enhance humoral and cellular immune responses,(3)preclinical efficacy against diverse pathogens,and(4)translational challenges and prospects.Biomembrane nanostructure-driven approaches represent a paradigm shift in the development of next-generation bacterial protein vaccines against resistant infections.
基金supported by the China Postdoctoral Science Foundation,No.2022M712689the Natural Science Foundation of the Jiangsu Higher Education Institutions of China,No.22KJB1800029+1 种基金The University Student Innovation Project of Yangzhou University,No.XCX20240856The Jiangsu Provincial Science and Technology Talent Project,No.FZ20240964(all to TX).
文摘Ischemic stroke is a serious medical event that cannot be predicted in advance and can have longlasting effects on patients,families,and communities.A deeper understanding of the changes in gene expression and the fundamental molecular mechanisms involved could help address this critical issue.In recent years,research into regulatory long non-coding(lnc)RNAs,a diverse group of RNA molecules with regulatory functions,has emerged as a promising direction in the study of cerebral infarction.This review paper aims to provide a comprehensive exploration of the roles of regulatory lncRNAs in cerebral infarction,as well as potential strategies for their application in clinical settings.LncRNAs have the potential to act as“sponges”that attract specific microRNAs,thereby regulating the expression of microRNA target genes.These interactions influence various aspects of ischemic stroke,including reperfusion-induced damage,cell death,immune responses,autophagy,angiogenesis,and the generation of reactive oxygen species.We highlight several regulatory lncRNAs that have been utilized in animal model treatments,including lncRNA NKILA,lncRNA Meg8,and lncRNA H19.Additionally,we discuss lncRNAs that have been used as biomarkers for the diagnosis and prognosis of cerebral infarction,such as lncRNA FOXO3,lncRNA XIST,and lncRNA RMST.The lncRNAs hold potential for genetic-level treatments in patients.However,numerous challenges,including inefficiency,low targeting accuracy,and side effects observed in preliminary studies,indicate the need for thorough investigation.The application of lncRNAs in ischemic stroke presents challenges that require careful and extensive validation.
文摘AIM:To compare the tear film quantity and stability parameters in keratoconus(KCN)and normal eyes using test breakup time(TBUT),noninvasive TBUT(NITBUT),and Schirmer test.METHODS:All participants(n=166),including patients with KCN and age-matched healthy individuals with normal corneas,were recruited from those referred to Farabi Eye Hospital,Iran,in 2023.To better account for genetic and environmental factors,the control group comprised healthy individuals who were relatives of KCN patients and had normal corneal topography.Tear quantity parameters were evaluated in the following order:NITBUT,TBUT,and Schirmer tests.RESULTS:The mean age of cases in KCN(61.7%males)and normal(63.5%males)participants was 27.54±5.44y(range 19 to 38)and 27.52±5.63y(range 20 to 38),respectively(P=0.976).NIBUT,TBUT,and Schirmer’s tests were significantly lower in KCN group compared to normal controls(all P<0.001).The mean difference for NIBUT was-7.81s(P<0.001),and for TBUT was-7.61s(P<0.001).Schirmer test values were also significantly lower in the KCN group,with a mean difference of-5.61 mm compared to normal people(P<0.001).CONCLUSION:Our findings demonstrate significant tear film impairment in KCN.The reductions in NIBUT,TBUT and Schirmer scores highlight an underlying tear film dysfunction in KCN that extends beyond the morphological changes of the cornea.
文摘Complex genetic relationships between neurodegenerative disorders and neuropsychiatric symptoms have been shown, suggesting shared pathogenic mechanisms and emphasizing the potential for developing common therapeutic targets. Apolipoprotein E(APOE) genotypes and their corresponding protein(Apo E) isoforms may influence the biophysical properties of the cell membrane lipid bilayer. However, the role of APOE in central nervous system pathophysiology extended beyond its lipid transport function. In the present review article, we analyzed the links existing between APOE genotypes and the neurobiology of neuropsychiatric symptoms in neurodegenerative and vascular diseases. APOE genotypes(APOE ε2, APOE ε3, and APOE ε4) were implicated in common mechanisms underlying a wide spectrum of neurodegenerative diseases, including sporadic Alzheimer's disease, synucleinopathies such as Parkinson's disease and Lewy body disease, stroke, and traumatic brain injury. These shared pathways often involved neuroinflammation, abnormal protein accumulation, or responses to acute detrimental events. Across these conditions, APOE variants are believed to contribute to the modulation of inflammatory responses, the regulation of amyloid and tau pathology, as well as the clearance of proteins such as α-synuclein. The bidirectional interactions among Apo E, amyloid and mitochondrial metabolism, immunomodulatory effects, neuronal repair, and remodeling underscored the complexity of Apo E's role in neuropsychiatric symptoms associated with these conditions since from early phases of cognitive impairment such as mild cognitive impairment and mild behavioral impairment. Besides Apo E-specific isoforms' link to increased neuropsychiatric symptoms in Alzheimer's disease(depression, psychosis, aberrant motor behaviors, and anxiety, not apathy), the APOE ε4 genotype was also considered a significant genetic risk factor for Lewy body disease and its worse cognitive outcomes. Conversely, the APOE ε2 variant has been observed not to exert a protective effect equally in all neurodegenerative diseases. Specifically, in Lewy body disease, this variant may delay disease onset, paralleling its protective role in Alzheimer's disease, although its role in frontotemporal dementia is uncertain. The APOE ε4 genotype has been associated with adverse cognitive outcomes across other various neurodegenerative conditions. In Parkinson's disease, the APOE ε4 allele significantly impacted cognitive performance, increasing the risk of developing dementia, even in cases of pure synucleinopathies with minimal co-pathology from Alzheimer's disease. Similarly, in traumatic brain injury, recovery rates varied, with APOE ε4 carriers demonstrating a greater risk of poor long-term cognitive outcomes and elevated levels of neuropsychiatric symptoms. Furthermore, APOE ε4 influenced the age of onset and severity of stroke, as well as the likelihood of developing stroke-associated dementia, potentially due to its role in compromising endothelial integrity and promoting blood–brain barrier dysfunction.
基金supported by grants from the Jiangxi Provincial Natural Science Foundation,No.20242BAB26134(to XF)the National Natural Science Foundation of China,Nos.82060638(to TC),82060222(to XF),82460237(to XF)+1 种基金the Major Disciplines of Academic and Technical Leaders Project of Jiangxi Province,Nos.20194BCJ22032(to TC),20213BCJL22049(to XF)Science and Technology Plan of Jiangxi Health Planning Committee,No.202210390(to XF).
文摘Parkinson’s disease is characterized by synucleinopathy-associated neurodegeneration.Previous studies have shown that glucagon-like peptide-1(GLP-1)has beneficial effects in a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.However,the effect of GLP-1 on intrinsic synuclein malfunction remains unclear.In this study,we investigated the effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism in SncaA53T transgenic mice and explored the underlying mechanisms.Our data showed that Lactococcus lactis MG1363-pMG36e-GLP-1 inhibited dopaminergic neuronal death,reduced pathological aggregation ofα-synuclein,and decreased movement disorders in SncaA53T transgenic mice.Furthermore,Lactococcus lactis MG1363-pMG36e-GLP-1 downregulated lipopolysaccharide-related inflammation,reduced cerebral activation of microglia and astrocytes,and promoted cell survival via the GLP-1 receptor/PI3K/Akt pathway in the substantia nigra.Additionally,Lactococcus lactis MG1363-pMG36e-GLP-1 decreased serum levels of pro-inflammatory molecules including lipopolysaccharide,lipopolysaccharide binding protein,interleukin-1β,and interleukin-6.Gut histopathology and western blotting further revealed that Lactococcus lactis MG1363-pMG36e-GLP-1 increased the expression of gut integrity-related proteins and reduced lipopolysaccharide-related inflammation by reversing gut dysbiosis in SncaA53T transgenic mice.Our findings showed that the beneficial effect of Lactococcus lactis MG1363-pMG36e-GLP-1 on parkinsonism traits in SncaA53T transgenic mice is mediated by microglial polarization and the reversal of dysbiosis.Collectively,our findings suggest that Lactococcus lactis MG1363-pMG36e-GLP-1 is a promising therapeutic agent for the treatment of Parkinson’s disease.
基金the support from Base for Interdisciplinary Innovative Talent Training,Shanghai Jiao Tong UniversityYouth Science and Technology Innovation Studio of Shanghai Jiao Tong University School of Medicine。
文摘Neural injuries can cause considerable functional impairments,and both central and peripheral nervous systems have limited regenerative capacity.The existing conventional pharmacological treatments in clinical practice show poor targeting,rapid drug clearance from the circulatory system,and low therapeutic efficiency.Therefore,in this review,we have first described the mechanisms underlying nerve regeneration,characterized the biomaterials used for drug delivery to facilitate nerve regeneration,and highlighted the functionalization strategies used for such drug-delivery systems.These systems mainly use natural and synthetic polymers,inorganic materials,and hybrid systems with advanced drug-delivery abilities,including nanoparticles,hydrogels,and scaffoldbased systems.Then,we focused on comparing the types of drug-delivery systems for neural regeneration as well as the mechanisms and challenges associated with targeted delivery of drugs to facilitate neural regeneration.Finally,we have summarized the clinical application research and limitations of targeted delivery of these drugs.These biomaterials and drug-delivery systems can provide mechanical support,sustained release of bioactive molecules,and enhanced intercellular contact,ultimately reducing cell apoptosis and enhancing functional recovery.Nevertheless,immune reactions,degradation regulation,and clinical translations remain major unresolved challenges.Future studies should focus on optimizing biomaterial properties,refining delivery precision,and overcoming translational barriers to advance these technologies toward clinical applications.
文摘Rhegmatogenous retinal detachment(RRD)is a serious ocular condition marked by the separation of the neuroretina from the retinal pigment epithelium(RPE).The pathogenesis of RRD involves intricate molecular and cellular mechanisms,including inflammation,cell migration,and the activation of proliferative signaling pathways.One of the most challenging complications of RRD is proliferative vitreoretinopathy(PVR),which refers to the proliferation and contraction of fibrocellular membranes on the retinal surface and in the vitreous cavity.PVR is a major cause of surgical failure in RRD,as it can lead to recurrent retinal detachment and severe vision loss.However,the pathogenesis of PVR is not yet fully understood,and the treatment options are quite limited.Recent advances in analytical techniques have offered valuable insights into the molecular alterations present in the subretinal fluid(SRF)of patients with RRD.This review seeks to consolidate the current knowledge regarding the SRF profile in RRD and PVR,emphasizing potential biomarkers and therapeutic targets.
文摘Artificial intelligence(AI)is revolutionizing medical imaging,particularly in chronic liver diseases assessment.AI technologies,including machine learning and deep learning,are increasingly integrated with multiparametric ultrasound(US)techniques to provide more accurate,objective,and non-invasive evaluations of liver fibrosis and steatosis.Analyzing large datasets from US images,AI enhances diagnostic precision,enabling better quantification of liver stiffness and fat content,which are essential for diagnosing and staging liver fibrosis and steatosis.Combining advanced US modalities,such as elastography and doppler imaging with AI,has demonstrated improved sensitivity in identifying different stages of liver disease and distinguishing various degrees of steatotic liver.These advancements also contribute to greater reproducibility and reduced operator dependency,addressing some of the limitations of traditional methods.The clinical implications of AI in liver disease are vast,ranging from early detection to predicting disease progression and evaluating treatment response.Despite these promising developments,challenges such as the need for large-scale datasets,algorithm transparency,and clinical validation remain.The aim of this review is to explore the current applications and future potential of AI in liver fibrosis and steatosis assessment using multiparametric US,highlighting the technological advances and clinical relevance of this emerging field.
基金supported by the National Research Foundation of Korea,Nos.2021R1A2C2006110,2021M3E5D9021364,2019R1A5A2026045(to BGK)the Korea Initiative for Fostering University of Research and Innovation(KIURI)Program of the NRF funded by the MSIT(to HK),No.NRF2021M3H1A104892211(to HSK)。
文摘Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.Here,we investigated whether modifying the intrinsic properties of neural stem cells could enhance their integration post-transplantation.We focused on phosphatase and tensin homolog(PTEN),a well-characterized tumor suppressor known to critically regulate neuronal survival and axonal regeneration.By deleting Pten in mouse neural stem cells,we observed increased neurite outgrowth and enhanced resistance to neurotoxic environments in culture.Upon transplantation into injured spinal cords,Pten-deficient neural stem cells exhibited higher survival and more extensive rostrocaudal distribution.To examine the potential influence of partial PTEN suppression,rat neural stem cells were treated with short hairpin RNA targeting PTEN,and the PTEN knockdown resulted in significant improvements in neurite growth,survival,and neurosphere motility in vitro.Transplantation of sh PTEN-treated neural stem cells into the injured spinal cord also led to an increase in graft survival and migration to an extent similar to that of complete deletion.Moreover,PTEN suppression facilitated neurite elongation from NSC-derived neurons migrating from the lesion epicenter.These findings suggest that modifying intrinsic signaling pathways,such as PTEN,within neural stem cells could bolster their therapeutic efficacy,offering potential avenues for future regenerative strategies for spinal cord injury.
基金supported by the National Key Research and Development Program of China,No.2019YFA0111200the National Natural Science Foundation of China,Nos.U23A20436,82371047+3 种基金Key Research Project in Shanxi Province,No.202302130501008Shanxi Provincial Science Fund for Distinguished Young Scholars,No.202103021221008Key Research and Development Program in Shanxi Province,No.202204051001023Shanxi Medical University Doctor’s Startup Fund Project,No.SD22028(all to YG)。
文摘Retinal ganglion cells are the bridging neurons between the eye and the central nervous system,transmitting visual signals to the brain.The injury and loss of retinal ganglion cells are the primary pathological changes in several retinal degenerative diseases,including glaucoma,ischemic optic neuropathy,diabetic neuropathy,and optic neuritis.In mammals,injured retinal ganglion cells lack regenerative capacity and undergo apoptotic cell death within a few days of injury.Additionally,these cells exhibit limited regenerative ability,ultimately contributing to vision impairment and potentially leading to blindness.Currently,the only effective clinical treatment for glaucoma is to prevent vision loss by lowering intraocular pressure through medications or surgery;however,this approach cannot halt the effect of retinal ganglion cell loss on visual function.This review comprehensively investigates the mechanisms underlying retinal ganglion cell degeneration in retinal degenerative diseases and further explores the current status and potential of cell replacement therapy for regenerating retinal ganglion cells.As our understanding of the complex processes involved in retinal ganglion cell degeneration deepens,we can explore new treatment strategies,such as cell transplantation,which may offer more effective ways to mitigate the effect of retinal degenerative diseases on vision.
基金supported by Basic Research Programs of Science and Technology Commission Foundation of Shanxi Province,No.20210302123486(to WJ).
文摘Epilepsy,a common neurological disorder,is characterized by recurrent seizures that can lead to cognitive,psychological,and neurobiological consequences.The pathogenesis of epilepsy involves neuronal dysfunction at the molecular,cellular,and neural circuit levels.Abnormal molecular signaling pathways or dysfunction of specific cell types can lead to epilepsy by disrupting the normal functioning of neural circuits.The continuous emergence of new technologies and the rapid advancement of existing ones have facilitated the discovery and comprehensive understanding of the neural circuit mechanisms underlying epilepsy.Therefore,this review aims to investigate the current understanding of the neural circuit mechanisms in epilepsy based on various technologies,including electroencephalography,magnetic resonance imaging,optogenetics,chemogenetics,deep brain stimulation,and brain-computer interfaces.Additionally,this review discusses these mechanisms from three perspectives:structural,synaptic,and transmitter circuits.The findings reveal that the neural circuit mechanisms of epilepsy encompass information transmission among different structures,interactions within the same structure,and the maintenance of homeostasis at the cellular,synaptic,and neurotransmitter levels.These findings offer new insights for investigating the pathophysiological mechanisms of epilepsy and enhancing its clinical diagnosis and treatment.
基金supported by the Natural Science Foundation of Guangxi Zhuang Automomous Region,Nos.2019GXNSFDA245015(to MC),2022GXNSFBA035654(to HL)the National Natural Science Foundation of China,Nos.82360241(to MC),82304876(to HL)+1 种基金Scientific Research and Technology Development Project of Guilin City,Nos.20220139-3(to MC),20210218-5(to HL)Guangxi Medical and Health Key Discipline Construction Project(to QL)。
文摘α-Synuclein accumulation and transmission are vital to the pathogenesis of Parkinson's disease,although the mechanisms underlying misfoldedα-synuclein accumulation and propagation have not been conclusively determined.The expression of low-density lipoprotein receptor–related protein 1,which is abundantly expressed in neurons and considered to be a multifunctional endocytic receptor,is elevated in the neurons of patients with Parkinson's disease.However,whether there is a direct link between low-density lipoprotein receptor–related protein 1 andα-synuclein aggregation and propagation in Parkinson's disease remains unclear.Here,we established animal models of Parkinson's disease by inoculating monkeys and mice withα-synuclein pre-formed fibrils and observed elevated low-density lipoprotein receptor–related protein 1 levels in the striatum and substantia nigra,accompanied by dopaminergic neuron loss and increasedα-synuclein levels.However,low-density lipoprotein receptor–related protein 1 knockdown efficiently rescued dopaminergic neurodegeneration and inhibited the increase inα-synuclein levels in the nigrostriatal system.In HEK293A cells overexpressingα-synuclein fragments,low-density lipoprotein receptor–related protein 1 levels were upregulated only when the N-terminus ofα-synuclein was present,whereas anα-synuclein fragment lacking the N-terminus did not lead to low-density lipoprotein receptor–related protein 1 upregulation.Furthermore,the N-terminus ofα-synuclein was found to be rich in lysine residues,and blocking lysine residues in PC12 cells treated withα-synuclein pre-formed fibrils effectively reduced the elevated low-density lipoprotein receptor–related protein 1 andα-synuclein levels.These findings indicate that low-density lipoprotein receptor–related protein 1 regulates pathological transmission ofα-synuclein from the striatum to the substantia nigra in the nigrostriatal system via lysine residues in theα-synuclein N-terminus.