期刊文献+
共找到4,612篇文章
< 1 2 231 >
每页显示 20 50 100
Overexpression of the inwardly rectifying potassium channel Kir4.1 or Kir4.1 Tyr^(9)Asp in Müller cells exerts neuroprotective effects in an experimental glaucoma model 被引量:1
1
作者 Fang Li Zhen Li +6 位作者 Shuying Li Hong Zhou Yunhui Guo Yongchen Wang Bo Lei Yanying Miao Zhongfeng Wang 《Neural Regeneration Research》 2026年第4期1628-1640,共13页
Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apopt... Downregulation of the inwardly rectifying potassium channel Kir4.1 is a key step for inducing retinal Müller cell activation and interaction with other glial cells,which is involved in retinal ganglion cell apoptosis in glaucoma.Modulation of Kir4.1 expression in Müller cells may therefore be a potential strategy for attenuating retinal ganglion cell damage in glaucoma.In this study,we identified seven predicted phosphorylation sites in Kir4.1 and constructed lentiviral expression systems expressing Kir4.1 mutated at each site to prevent phosphorylation.Following this,we treated Müller glial cells in vitro and in vivo with the m Glu R I agonist DHPG to induce Kir4.1 or Kir4.1 Tyr^(9)Asp overexpression.We found that both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited activation of Müller glial cells.Subsequently,we established a rat model of chronic ocular hypertension by injecting microbeads into the anterior chamber and overexpressed Kir4.1 or Kir4.1 Tyr^(9)Asp in the eye,and observed similar results in Müller cells in vivo as those seen in vitro.Both Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression inhibited Müller cell activation,regulated the balance of Bax/Bcl-2,and reduced the m RNA and protein levels of pro-inflammatory factors,including interleukin-1βand tumor necrosis factor-α.Furthermore,we investigated the regulatory effects of Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression on the release of pro-inflammatory factors in a co-culture system of Müller glial cells and microglia.In this co-culture system,we observed elevated adenosine triphosphate concentrations in activated Müller cells,increased levels of translocator protein(a marker of microglial activation),and elevated interleukin-1βm RNA and protein levels in microglia induced by activated Müller cells.These changes could be reversed by Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression in Müller cells.Kir4.1 overexpression,but not Kir4.1 Tyr^(9)Asp overexpression,reduced the number of proliferative and migratory microglia induced by activated Müller cells.Collectively,these results suggest that the tyrosine residue at position nine in Kir4.1 may serve as a functional modulation site in the retina in an experimental model of glaucoma.Kir4.1 and Kir4.1 Tyr^(9)Asp overexpression attenuated Müller cell activation,reduced ATP/P2X receptor–mediated interactions between glial cells,inhibited microglial activation,and decreased the synthesis and release of pro-inflammatory factors,consequently ameliorating retinal ganglion cell apoptosis in glaucoma. 展开更多
关键词 apoptosis chronic ocular hypertension glial cell activation Kir4.1 overexpression Kir4.1 Tyr^(9)Asp mutation microglia Müller cells NEUROINFLAMMATION neuroprotection retinal ganglion cells
暂未订购
Functional central nervous system regeneration:Challenges from axons to circuits
2
作者 Apolline Delaunay Mickael Le Boulc’h +1 位作者 Stephane Belin Homaira Nawabi 《Neural Regeneration Research》 2026年第5期1983-1984,共2页
The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzh... The mature central nervous system(CNS,composed of the brain,spinal cord,olfactory and optic nerves)is unable to regenerate spontaneously after an insult,both in the cases of neurodegenerative diseases(for example Alzheimer's or Parkinson's disease)or traumatic injuries(such as spinal cord lesions).In the last 20 years,the field has made significant progress in unlocking axon regrowth. 展开更多
关键词 parkinsons disease unlocking axon regrowth neurodegenerative diseases central nervous system cnscomposed functional regeneration axon regrowth spinal cord lesions central nervous system
暂未订购
A novel generation of potent gamma-secretase modulators: Combat Alzheimer's disease and Down syndrome–associated Alzheimer's disease
3
作者 Xu-Qiao Chen 《Neural Regeneration Research》 2026年第1期316-317,共2页
Alzheimer's disease and Down syndrome:Down syndrome(DS)is a genetic disorder caused by the presence of an extra complete or partial chromosome 21.Over the past few decades,significant advancements in medical treat... Alzheimer's disease and Down syndrome:Down syndrome(DS)is a genetic disorder caused by the presence of an extra complete or partial chromosome 21.Over the past few decades,significant advancements in medical treatment and nursing care have greatly improved the life expectancy of individuals with DS.However,as they age,their risk of developing Alzheimer’s disease(AD)increases considerably(Antonarakis et al.,2020). 展开更多
关键词 ALZHEIMER DOWN NURSING
暂未订购
Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system
4
作者 Seda Demir Gereon R.Fink +1 位作者 Maria A.Rueger Stefan J.Blaschke 《Neural Regeneration Research》 2026年第4期1264-1276,共13页
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn... Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation. 展开更多
关键词 noninvasive brain stimulation preclinical modeling STROKE transcranial direct current stimulation transcranial magnetic stimulation traumatic brain injury
暂未订购
Polysialic acid-Siglec immune checkpoints of microglia and macrophages:Perspectives for therapeutic intervention
5
作者 Hauke Thiesler Herbert Hildebrandt 《Neural Regeneration Research》 2026年第2期661-662,共2页
Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neu... Microglia are the resident macrophages of the central nervous system.They act as the first line of defense against pathogens and play essential roles in neuroinflammation and tissue repair after brain insult or in neurodegenerative and demyelinating diseases(Borst et al.,2021).Together with infiltrating monocyte-derived macrophages,microglia also play a critical role for brain tumor development,since immunosuppressive interactions between tumor cells and tumor-associated microglia and macrophages(TAM)are linked to malignant progression.This mechanism is of particular relevance in glioblastoma(GB),the deadliest form of brain cancer with a median overall survival of less than 15 months(Khan et al.,2023).Therefore,targeting microglia and macrophage activation is a promising strategy for therapeutic interference in brain disease. 展开更多
关键词 therapeutic intervention central nervous system immune checkpoints neurodegenerative demyelinating diseases borst MACROPHAGES polysialic acid SIGLEC MICROGLIA
暂未订购
Potential of in vitro microelectrode arrays in Alzheimer's disease research
6
作者 Aoife O’Connell Andrea Kwakowsky 《Neural Regeneration Research》 2026年第5期1993-1994,共2页
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most prominent cause of dementia.In 2019,over 57.4million people were living with AD and other dementia subtypes,a number which is ex... Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most prominent cause of dementia.In 2019,over 57.4million people were living with AD and other dementia subtypes,a number which is expected to increase to over 152.8 million in the next 25years.This ever-increasing burden has resulted in AD and other neurodegenerative diseases rising to one of the top 10 causes of death globally (O'Connell et al.,2024). 展开更多
关键词 neurodegenerative diseases vitro microelectrode arrays global burden RESEARCH alzheimers disease neurodegenerative disorder DEMENTIA Alzheimers disease
暂未订购
Astrocyte glycolysis in Alzheimer’s disease:When the stars burn out
7
作者 Simon M.Bell Heather Mortiboys 《Neural Regeneration Research》 2026年第3期1130-1131,共2页
Alzheimer’s disease(AD)is the most common form of dementia characterized pathologically by the deposition of amyloid plaques and hyperphosphorylated tau containing neurofibrillary tangles.The disease presents clinica... Alzheimer’s disease(AD)is the most common form of dementia characterized pathologically by the deposition of amyloid plaques and hyperphosphorylated tau containing neurofibrillary tangles.The disease presents clinically with progressive memory loss and disruption of cognitive function.Currently,there is no cure for AD;recent advances in the therapeutics aimed at clearing the amyloid protein from the brain have led to potential disease stabilization,however,this does not prevent eventual disease progression(Cummings et al.,2024). 展开更多
关键词 hyperphosphorylated tau containing neurofibrillary tanglesthe memory loss alzheimer s disease ad Alzheimers disease ASTROCYTE GLYCOLYSIS amyloid protein amyloid plaques
暂未订购
Targeting Wallerian degeneration in glaucoma
8
作者 Melissa Jöe Pete A.Williams 《Neural Regeneration Research》 2026年第2期693-694,共2页
Neurodegenerative diseases account for a large and increasing health and economic burden worldwide.With an increasingly aged population,this burden is set to increase.Optic neuropathies make up a large proportion of n... Neurodegenerative diseases account for a large and increasing health and economic burden worldwide.With an increasingly aged population,this burden is set to increase.Optic neuropathies make up a large proportion of neurodegenerative diseases with glaucoma being highly prevalent.Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells and their axons which make up the optic nerve.It is the leading cause of irreversible vision loss and affects an estimated 80 million people.The mammalian central nervous system is non-regenerative and,once lost or injured,retinal ganglion cells cannot regenerate an axon into the optic nerve under basal conditions.Thus,strategies that provide neuroprotection to stressed,dysfunctional,or dying retinal ganglion cells are likely to be of high therapeutic and translational value.Advancing age,genetics,and elevated intraocular pressure are all major risk factors for glaucoma,however,all clinically available glaucoma treatments focus on intraocular pressure management and do not directly address the neurodegenerative component of glaucoma. 展开更多
关键词 health burden neurodegenerative diseases aged population Wallerian degeneration GLAUCOMA vision loss economic burden retinal ganglion cells their axons
暂未订购
mTORC1 and mTORC2 synergy in human neural development, disease, and regeneration
9
作者 Navroop K.Dhaliwal Julien Muffat Yun Li 《Neural Regeneration Research》 2026年第4期1552-1553,共2页
The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regul... The mechanistic target of rapamycin(m TOR) is a serine/threonine kinase that plays a pivotal role in cellular growth, proliferation, survival, and metabolism. In the central nervous system(CNS), the mTOR pathway regulates diverse aspects of neural development and function. Genetic mutations within the m TOR pathway lead to severe neurodevelopmental disorders, collectively known as “mTORopathies”(Crino, 2020). Dysfunctions of m TOR, including both its hyperactivation and hypoactivation, have also been implicated in a wide spectrum of other neurodevelopmental and neurodegenerative conditions, highlighting its importance in CNS health. 展开更多
关键词 m tor neural development mtorc central nervous system cns mtor neurodevelopmental disorders neurodegenerative conditions
暂未订购
Brain structural plasticity in large-brained mammals:Not only narrowing roads
10
作者 Marco Ghibaudi Alessandro Zanone Luca Bonfanti 《Neural Regeneration Research》 2026年第5期1669-1680,共12页
The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.H... The capacity of the central nervous system for structural plasticity and regeneration is commonly believed to show a decreasing progression from“small and simple”brains to the larger,more complex brains of mammals.However,recent findings revealed that some forms of neural plasticity can show a reverse trend.Although plasticity is a well-preserved,transversal feature across the animal world,a variety of cell populations and mechanisms seem to have evolved to enable structural modifications to take place in widely different brains,likely as adaptations to selective pressures.Increasing evidence now indicates that a trade-off has occurred between regenerative(mostly stem cell–driven)plasticity and developmental(mostly juvenile)remodeling,with the latter primarily aimed not at brain repair but rather at“sculpting”the neural circuits based on experience.In particular,an evolutionary trade-off has occurred between neurogenic processes intended to support the possibility of recruiting new neurons throughout life and the different ways of obtaining new neurons,and between the different brain locations in which plasticity occurs.This review first briefly surveys the different types of plasticity and the complexity of their possible outcomes and then focuses on recent findings showing that the mammalian brain has a stem cell–independent integration of new neurons into pre-existing(mature)neural circuits.This process is still largely unknown but involves neuronal cells that have been blocked in arrested maturation since their embryonic origin(also termed“immature”or“dormant”neurons).These cells can then restart maturation throughout the animal's lifespan to become functional neurons in brain regions,such as the cerebral cortex and amygdala,that are relevant to high-order cognition and emotions.Unlike stem cell–driven postnatal/adult neurogenesis,which significantly decreases from small-brained,short-living species to large-brained ones,immature neurons are particularly abundant in large-brained,long-living mammals,including humans.The immature neural cell populations hosted in these complex brains are an interesting example of an“enlarged road”in the phylogenetic trend of plastic potential decreases commonly observed in the animal world.The topic of dormant neurons that covary with brain size and gyrencephaly represents a prospective turning point in the field of neuroplasticity,with important translational outcomes.These cells can represent a reservoir of undifferentiated neurons,potentially granting plasticity within the high-order circuits subserving the most sophisticated cognitive skills that are important in the growing brains of young,healthy individuals and are frequently affected by debilitating neurodevelopmental and degenerative disorders. 展开更多
关键词 adult neurogenesis AMYGDALA brain plasticity cerebral cortex comparative approach evolution immature neurons
暂未订购
Pericyte-glial cell interactions: Insights into brain health and disease
11
作者 Ali Sepehrinezhad Ali Gorji 《Neural Regeneration Research》 2026年第4期1253-1263,共11页
Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, ... Pericytes are multi-functional mural cells of the central nervous system that cover the capillary endothelial cells. Pericytes play a vital role in nervous system development, significantly influencing the formation, maturation, and maintenance of the central nervous system. An expanding body of studies has revealed that pericytes establish carefully regulated interactions with oligodendrocytes, microglia, and astrocytes. These communications govern numerous critical brain processes, including angiogenesis, neurovascular unit homeostasis, blood–brain barrier integrity, cerebral blood flow regulation, and immune response initiation. Glial cells and pericytes participate in dynamic and reciprocal interactions, with each influencing and adjusting the functionality of the other. Pericytes have the ability to control astrocyte polarization, trigger differentiation of oligodendrocyte precursor cells, and initiate immunological responses in microglia. Various neurological disorders that compromise the integrity of the blood–brain barrier can disrupt these communications, impair waste clearance, and hinder cerebral blood circulation, contributing to neuroinflammation. In the context of neurodegeneration, these disruptions exacerbate pathological processes, such as neuronal damage, synaptic dysfunction, and impaired tissue repair. This article explores the complex interactions between pericytes and various glial cells in both healthy and pathological states of the central nervous system. It highlights their essential roles in neurovascular function and disease progression, providing important insights that may enhance our understanding of the molecular mechanisms underlying these interactions and guide potential therapeutic strategies for neurodegenerative disorders in future research. 展开更多
关键词 BRAIN INFLAMMATION NEUROPROTECTION neurovascular function therapeutic targets
暂未订购
Differential plasticity of excitatory and inhibitory reticulospinal fibers after spinal cord injury:Implication for recovery
12
作者 Rozaria Jeleva Carmen Denecke Muhr +1 位作者 Alina P.Liebisch Florence M.Bareyre 《Neural Regeneration Research》 2026年第5期2011-2020,共10页
The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory ... The remodeling of axonal connections following injury is an important feature driving functional recovery.The reticulospinal tract is an interesting descending motor tract that contains both excitatory and inhibitory fibers.While the reticulospinal tract has been shown to be particularly prone to axonal growth and plasticity following injuries of the spinal cord,the differential capacities of excitatory and inhibitory fibers for plasticity remain unclear.As adaptive axonal plasticity involves a sophisticated interplay between excitatory and inhibitory input,we investigated in this study the plastic potential of glutamatergic(vGlut2)and GABAergic(vGat)fibers originating from the gigantocellular nucleus and the lateral paragigantocellular nucleus,two nuclei important for locomotor function.Using a combination of viral tracing,chemogenetic silencing,and AI-based kinematic analysis,we investigated plasticity and its impact on functional recovery within the first 3 weeks following injury,a period prone to neuronal remodeling.We demonstrate that,in this time frame,while vGlut2-positive fibers within the gigantocellular and lateral paragigantocellular nuclei rewire significantly following cervical spinal cord injury,vGat-positive fibers are rather unresponsive to injury.We also show that the acute silencing of excitatory axonal fibers which rewire in response to lesions of the spinal cord triggers a worsening of the functional recovery.Using kinematic analysis,we also pinpoint the locomotion features associated with the gigantocellular nucleus or lateral paragigantocellular nucleus during functional recovery.Overall,our study increases the understanding of the role of the gigantocellular and lateral paragigantocellular nuclei during functional recovery following spinal cord injury. 展开更多
关键词 GABAergic(vGat)fibers gait features glutamatergic(vGlut2)fibers PLASTICITY recovery of function reticulospinal tract spinal cord injury
暂未订购
Intersection of mitochondrial dysfunction and myelination:An overlooked aspect in neurodevelopmental disorders
13
作者 Ariel Nir Sade Gal Wiener Boaz Barak 《Neural Regeneration Research》 2026年第2期659-660,共2页
Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables th... Neurodevelopmental processes represent a finely tuned interplay between genetic and environmental factors,shaping the dynamic landscape of the developing brain.A major component of the developing brain that enables this dynamic is the white matter(WM),known to be affected in neurodevelopmental disorders(NDDs)(Rokach et al.,2024).WM formation is mediated by myelination,a multifactorial process driven by neuro-glia interactions dependent on proper neuronal functionality(Simons and Trajkovic,2006).Another key aspect of neurodevelopmental abnormalities involves neuronal dynamics and function,with recent advances significantly enhancing our understanding of both neuronal and glial mitochondrial function(Devine and Kittler,2018;Rojas-Charry et al.,2021).Energy homeostasis in neurons,attributed largely to mitochondrial function,is critical for proper functionality and interactions with oligodendrocytes(OLs),the cells forming myelin in the brain’s WM.We herein discuss the interplay between these processes and speculate on potential dysfunction in NDDs. 展开更多
关键词 neurodevelopmental disorders ndds rokach white matter developing brain MYELINATION neurodevelopmental processes mitochondrial dysfunction white matter wm known developing braina
暂未订购
Noradrenergic excitation of astrocytes supports cognitive reserve
14
作者 Robert Zorec Alexei Verkhratsky 《Neural Regeneration Research》 2026年第4期1546-1547,共2页
The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It ha... The concept of the brain cognitive reserve is derived from the well-acknowledged notion that the degree of brain damage does not always match the severity of clinical symptoms and neurological/cognitive outcomes.It has been suggested that the size of the brain(brain reserve) and the extent of neural connections acquired through life(neural reserve) set a threshold beyond which noticeable impairments occur.In contrast,cognitive reserve refers to the brain's ability to adapt and reo rganize stru cturally and functionally to resist damage and maintain function,including neural reserve and brain maintenance,resilience,and compensation(Verkhratsky and Zorec,2024). 展开更多
关键词 ASTROCYTES brain reserve cognitive reserve clinical symptoms noradrenergic excitation neural reserve neural connections brain cognitive reserve
暂未订购
Extra-pineal melatonin in perisynaptic Schwann cell–muscle fiber cross talk at the regenerating neuromuscular junction
15
作者 Samuele Negro Cesare Montecucco Michela Rigoni 《Neural Regeneration Research》 2026年第1期300-301,共2页
The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore functio... The neuromuscular junction and its proregenerative niche:The mammalian peripheral nervous system,unlike the central nervous system,has preserved throughout evolution the ability to regenerate and fully restore function.Key factors for effective nerve regeneration include a supportive neuronal environment and a coordinated tissue response(Brosius Lutz and Barres,2014). 展开更多
关键词 FUNCTION SYSTEM COORDINATED
在线阅读 下载PDF
Converging assemblies:A putative building block for brain function and for interfacing with the brain
16
作者 Eran Stark Lidor Spivak 《Neural Regeneration Research》 2026年第3期1124-1125,共2页
The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they ... The organization of biological neuronal networks into functional modules has intrigued scientists and inspired engineers to develop artificial systems.These networks are characterized by two key properties.First,they exhibit dense interconnectivity(Braitenburg and Schüz,1998;Campagnola et al.,2022).The strength and probability of connectivity depend on cell type,inter-neuronal distance,and species.Still,every cortical neuron receives input from thousands of other neurons while transmitting output to a similar number of neurons.Second,communication between neurons occurs primarily via chemical or electrical synapses. 展开更多
关键词 cortical neuron INTERCONNECTIVITY neuronal networks functional modules dense interconnectivity braitenburg artificial systemsthese converging assemblies biological neuronal networks
暂未订购
Empowering the NSC-34 cell line as a motor neuron model: Cytosine arabinoside's action
17
作者 Giuseppe Vitale Susanna Amadio +1 位作者 Francesco Liguori Cinzia Volonté 《Neural Regeneration Research》 2026年第1期357-364,共8页
The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble dif... The NSC-34 cell line is a widely recognized motor neuron model and various neuronal differentiation protocols have been exploited. Under previously reported experimental conditions, only part of the cells resemble differentiated neurons;however, they do not exhibit extensive and time-prolonged neuritogenesis, and maintain their duplication capacity in culture. The aim of the present work was to facilitate long-term and more homogeneous neuronal differentiation in motor neuron–like NSC-34 cells. We found that the antimitotic drug cytosine arabinoside promoted robust and persistent neuronal differentiation in the entire cell population. Long and interconnecting neuronal processes with abundant growth cones were homogeneously induced and were durable for up to at least 6 weeks in culture. Moreover, cytosine arabinoside was permissive, dispensable, and mostly irreversible in priming NSC-34 cells for neurite initiation and regeneration after mechanical dislodgement. Finally, the expression of the cell proliferation antigen Ki67 was inhibited by cytosine arabinoside, whereas the expression levels of neuronal growth associated protein 43, vimentin, and motor neuron–specific p75, Islet2, homeobox 9 markers were upregulated, as confirmed by western blot and/or confocal immunofluorescence analysis. Overall, these findings support the use of NSC-34 cells as a motor neuron model for properly investigating neurodegenerative mechanisms and prospectively identifying neuroprotective strategies. 展开更多
关键词 cytosine arabinoside Islet2 Hb9 Ki67 mitosis inhibition neurite initiation neurite regeneration neuronal differentiation protocol NSC-34 P75
暂未订购
Enhancing neural stem cell integration in the injured spinal cord through targeted PTEN modulation
18
作者 Simay Geniscan Hee Hwan Park +6 位作者 Hyung Soon Kim Seokjin Yoo Hyunmi Kim Byeong Seong Jang Dong Hoon Hwang Kevin K Park Byung Gon Kim 《Neural Regeneration Research》 2026年第4期1586-1594,共9页
Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival a... Spinal cord injury results in permanent loss of neurological functions due to severance of neural networks.Transplantation of neural stem cells holds promise to repair disrupted connections.Yet,ensuring the survival and integration of neural stem cells into the host neural circuit remains a formidable challenge.Here,we investigated whether modifying the intrinsic properties of neural stem cells could enhance their integration post-transplantation.We focused on phosphatase and tensin homolog(PTEN),a well-characterized tumor suppressor known to critically regulate neuronal survival and axonal regeneration.By deleting Pten in mouse neural stem cells,we observed increased neurite outgrowth and enhanced resistance to neurotoxic environments in culture.Upon transplantation into injured spinal cords,Pten-deficient neural stem cells exhibited higher survival and more extensive rostrocaudal distribution.To examine the potential influence of partial PTEN suppression,rat neural stem cells were treated with short hairpin RNA targeting PTEN,and the PTEN knockdown resulted in significant improvements in neurite growth,survival,and neurosphere motility in vitro.Transplantation of sh PTEN-treated neural stem cells into the injured spinal cord also led to an increase in graft survival and migration to an extent similar to that of complete deletion.Moreover,PTEN suppression facilitated neurite elongation from NSC-derived neurons migrating from the lesion epicenter.These findings suggest that modifying intrinsic signaling pathways,such as PTEN,within neural stem cells could bolster their therapeutic efficacy,offering potential avenues for future regenerative strategies for spinal cord injury. 展开更多
关键词 graft axon growth graft survival neural stem cell PTEN regeneration spinal cord injury transplantation
暂未订购
Role of the medullary reticular formation in motor control and functional recovery following spinal cord injury
19
作者 Frederic Bretzner 《Neural Regeneration Research》 2026年第3期1138-1139,共2页
Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are... Spinal cord injury(SCI)interrupts the flow of information between the brain and the spinal cord,thus leading to a loss of sensory information and motor paralysis of the body below the lesion.Surprisingly,most SCIs are incomplete and spare supraspinal pathways,especially those located within the peripheral white matter of the spinal cord,which includes reticulospinal pathways originating from the medullary reticular formation.Whereas there is abundant literature about the motor cortex,its corticospinal pathway,and its capacity to modulate functional recovery after SCI,less is known about the medullary reticular formation and its reticulospinal pathway. 展开更多
关键词 spinal cord injury sci interrupts supraspinal pathwaysespecially peripheral white matter motor cortexits spinal cordthus corticospinal pathway spinal cordwhich reticulospinal pathways
暂未订购
Therapeutic potential of circular RNAs in neurovascular remodeling after stroke
20
作者 Zhenguo Yang Chi Kwan Tsang 《Neural Regeneration Research》 2026年第4期1550-1551,共2页
Stroke-induced alterations in cerebral blood flow trigger neurovascular remodeling,as manifested by the blood-brain barrier dysfunction and subs equent neurovascular repair activities such as angiogenesis.This process... Stroke-induced alterations in cerebral blood flow trigger neurovascular remodeling,as manifested by the blood-brain barrier dysfunction and subs equent neurovascular repair activities such as angiogenesis.This process involves neurovascular communication that facilitates the transport of mediators among cerebrovascular endothelial cells,pericytes,glial cells,and neurons,thereby transmitting signals from donor to recipient cells to elicit a collaborative response. 展开更多
关键词 therapeutic elicit collaborative response RNAS neurovascular communication neurovascular repair activities cerebrovascular endothelial cellspericytesglial neurovascular remodelingas CIRCULAR
暂未订购
上一页 1 2 231 下一页 到第
使用帮助 返回顶部