The high cost and complex modification process of carbon felt electrodes limits its further popularization in vanadium redox flow batteries(VFBs).By introducing low-cost melamine foam,nitrogen,phosphorus,and sulfur co...The high cost and complex modification process of carbon felt electrodes limits its further popularization in vanadium redox flow batteries(VFBs).By introducing low-cost melamine foam,nitrogen,phosphorus,and sulfur co-doped carbon nanotubes/melamine foam composite electrode(NPS-CNTs-CMF)is designed and fabricated via immersing melamine foam in a solution containing N,P,and S co-doped CNTs.The integration of modified CNTs significantly enhances the conductivity and hydrophilicity of the electrode.Moreover,the composite electrode also demonstrates outstanding electrocatalytic activity owing to the heteroatom doping that further inspired the electrocatalytic activity of CNTs.Density function theory cal-culations further uncover that introducing heteroatoms on CNTs not only promotes the adsorption of vanadium ions but also facilitates the electron transfer between vanadium ions and MF substrate.As a result,the battery loading with NPS-CNTs-CMF exhibits excellent battery performance,achieving energy efficiency of 80.12%at 300 mA cm^(-2).Additionally,the long-term cycling stability is attained over 200 consecutive charge-discharge cycles at 300 mA cm^(−2).This study provides a novel melamine foam mate-rial with low cost and simple modification,and this new composite structure stimulates the development of high-performance electrodes in VFBs.展开更多
Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_...Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.展开更多
The authors regret that an error in Fig.3E in this article was found while we reviewing the published data.An inadvertent mistake occurred in the process of assembling images.The picture of the Ms215μg/mL group was w...The authors regret that an error in Fig.3E in this article was found while we reviewing the published data.An inadvertent mistake occurred in the process of assembling images.The picture of the Ms215μg/mL group was wrongly placed.展开更多
Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers(RDL),pillar bumps,through silicon vias,etc.With advances of multilayered RDL,via-on-via structures have been deve...Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers(RDL),pillar bumps,through silicon vias,etc.With advances of multilayered RDL,via-on-via structures have been developed for ultrahigh-density any-layer interconnection,which expects superconformal filling of interlayer low aspect-ratio vias jointly with coplanar lines and pads.However,it poses a great challenge to electrodeposition,because current via fill mechanisms are stemming from middle to high aspect-ratio(>0.8)vias and lacking applicability in low aspect-ratio(<0.3)RDL-vias,where via geometry related electric-flow fields coupling must be reconsidered.In the present work,a four-additive strategy has been developed for RDL-vias fill and thoroughly investigated from additive electrochemistry,in situ Raman spectroelectrochemistry,and quantum chemistry perspectives.A novel adsorbate configuration controlled(ACC)electrodeposition mechanism is established that at weak-convection bilateral edges and lower corners,the adsorbate displays a weakly-adsorbing configuration to assist accelerator-governed deposition,whereas at strong-convection center,the adsorbate exhibits a mildlyadsorbing configuration to promote leveler-determined inhibition.Deposit profiles can be tailored from dished,flat to domed,depending on predominance of leveler over accelerator.This study should lay theoretical and practical foundations in design and application of copper electroplating additives of multiple adsorbate configurations to cope with complicated interconnect scenarios.展开更多
Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by com...Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.展开更多
Silicon has been regarded as one of the most promising next generation lithium-ion battery anode. How- ever, the poor cyclic stability of the Si based anode has severely limited its practical applications, which is ev...Silicon has been regarded as one of the most promising next generation lithium-ion battery anode. How- ever, the poor cyclic stability of the Si based anode has severely limited its practical applications, which is even worse with high mass loading density (〉1 mg cm^-2 ). A new concept has been developed to enhance the electrochemical performance of the Si nanoparticle anode. Silver nanoparticles are composited with the silicon nanoparticles in a facile way for the first time. It is found that the mechanical properties of the Si electrode have been significantly improved by the incorporation of the silver nanoparticles, leading to enhanced cyclic performance. With the Si/Ag mass ratio of 4:1, the reversible specific discharge capacity is retained as l 156 mA h g^-1 after 100 cycles at 200 mAg^-1, which is more than three times higher than that of the bare silicon (318 mA h g^-1 ). The rate performance has been effectively improved as well due to excellent electron conductivity of the silver nanoparticles.展开更多
A facile scalable synthesis of hierarchical Sb/C micro-/nanohybrid has been addressed in this work, which possesses the advantages of both micrometer and nanometer scale structures as lithium-ion battery anode. Difunc...A facile scalable synthesis of hierarchical Sb/C micro-/nanohybrid has been addressed in this work, which possesses the advantages of both micrometer and nanometer scale structures as lithium-ion battery anode. Difunctional methacrylate monomers are used as solvent and carbon source as well. Liquid precursor of antimony(III) n-butoxide is dissolved in the resin monomer solution, and further incorporated into the cross-linking polymer network via photo polymerization. Through calcination in argon/hydrogen atmosphere, antimony nanoparticles are in situ formed by carbothermal reduction, and homogeneously embedded in the in situ formed micrometer sized carbon matrix. The morphology, structure, crys- tallinity, spatial dispersion, composition, and electrochemical performance of the Sb/C micro-/nanohybrid are systemati- cally investigated. The cyclic and rate performance of the Sb/C micro-/nanohybrid anode have been effectively improved compared to the pure carbon anode. A reversible capacity of 362 mAh g-1 is achieved with a reasonable mass loading density after 300 cycles at 66 mA g-1, corresponding to capacity retention of 79%. With reducing mass loading density, the reversible capacity reaches 793 mAh g-1 after 100 cycles. Moreover, the electrochemical performance of Sb/C micro-/nanohybrid as sodium-ion battery anode is also investigated in this study.展开更多
As one of near-infrared(NIR) fluorescent(FL) nanoprobes, gold nanoclusters(Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size(〈1.5...As one of near-infrared(NIR) fluorescent(FL) nanoprobes, gold nanoclusters(Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size(〈1.5 nm). Herein, the well-defined gold clusters nanoassembly(Au CNA) was synthesized by the selfassembly of Au NCs based on protein cross-linking approach. The as-prepared Au CNA demonstrated highly effective cellular uptake and precise tumor targeting compared to that of Au NCs. Moreover, with the irradiation of 660 nm laser, Au CNA generated largely reactive oxygen species(ROS) for photodynamic therapy(PDT). In vitro and [39TD$IF]in vivo PDT revealed that Au CNA exhibited largely cell death and significantly tumor removal at a low power density of 0.2 W/cm^2. It could be speculated that the laser-excited Au CNA produced photon energy, which further obtained electron from oxygen to generate radical species.Therefore, Au CNA as a photosensitizer could realize NIR FL imaging and NIR laser induced PDT.展开更多
Objective:A protein-based leaking-proof theranostic nanoplatform for dual-modality imaging-guided tumor photodynamic therapy(PDT)has been designed.Impact Statement:A site-specific conjugation of chlorin e6(Ce6)to ferr...Objective:A protein-based leaking-proof theranostic nanoplatform for dual-modality imaging-guided tumor photodynamic therapy(PDT)has been designed.Impact Statement:A site-specific conjugation of chlorin e6(Ce6)to ferrimagnetic ferritin(MFtn-Ce6)has been constructed to address the challenge of unexpected leakage that often occurs during small-molecule drug delivery.Introduction:PDT is one of the most promising approaches for tumor treatment,while a delivery system is typically required for hydrophobic photosensitizers.However,the nonspecific distribution and leakage of photosensitizers could lead to insufficient drug accumulation in tumor sites.Methods:An engineered ferritin was generated for site-specific conjugation of Ce6 to obtain a leaking-proof delivery system,and a ferrimagnetic core was biomineralized in the cavity of ferritin,resulting in a fluorescent ferrimagnetic ferritin nanoplatform(MFtn-Ce6).The distribution and tumor targeting of MFtn-Ce6 can be detected by magnetic resonance imaging(MRI)and fluorescence imaging(FLI).Results:MFtn-Ce6 showed effective dual-modality MRI and FLI.A prolonged in vivo circulation and increased tumor accumulation and retention of photosensitizer was observed.The time-dependent distribution of MFtn-Ce6 can be precisely tracked in real time to find the optimal time window for PDT treatment.The colocalization of ferritin and the iron oxide core confirms the high stability of the nanoplatform in vivo.The results showed that mice treated with MFtn-Ce6 exhibited marked tumor-suppressive activity after laser irradiation.Conclusion:The ferritin-based leaking-proof nanoplatform can be used for the efficient delivery of the photosensitizer to achieve an enhanced therapeutic effect.This method established a general approach for the dual-modality imagingguided tumor delivery of PDT agents.展开更多
Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal ...Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.展开更多
High-entropy alloys(HEAs)with face-centered cubic(FCC)phase such as CoCrFeMnNi or CoCrNi generally exhibit ultra-high fracture toughness but relatively low strength.In contrast,body-centered cubic(BCC)HEAs often displ...High-entropy alloys(HEAs)with face-centered cubic(FCC)phase such as CoCrFeMnNi or CoCrNi generally exhibit ultra-high fracture toughness but relatively low strength.In contrast,body-centered cubic(BCC)HEAs often display higher strengths,but the few reports on fracture toughness measurement demonstrate low toughness values.Here we show that the BCC HfNbTaTiZr refractory HEA,which possesses a combination of high strength,good tensile ductility and excellent high-temperature properties,also exhibits a remarkably high fracture toughness.By using the"single specimen"compliance method for J-integral measurement according to the ASTM E1820–17 standard,its fracture toughness K_(JIC)was experimentally determined to be 210 MPa m^(1/2),which renders this HEA among the toughest metallic materials.The excellent damage tolerance makes the HEA promising for applications as high-temperature structural materials such as in aerospace field.展开更多
High-entropy alloys(HEAs)are composed of multiple principal elements and exhibit not only remarkable mechanical properties,but also promising potentials for developing numerous new compositions.To fully realize such p...High-entropy alloys(HEAs)are composed of multiple principal elements and exhibit not only remarkable mechanical properties,but also promising potentials for developing numerous new compositions.To fully realize such potentials,highthroughput preparation and characterization technologies are especially useful;thereby,the fast evaluations of mechanical properties will be urgently required.Revealing the relation between strength and hardness is of significance for quickly predicting the strength of materials through simple hardness testing.However,up to now the strength-hardness relation for HEAs is still a puzzle.In this work,the relations between tensile or compressive strength and Vickers hardness of various HEAs with hundreds of compositions at room temperature are investigated,and finally,the solution for estimating the strengths of HEAs from their hardness values is achieved.Data for hundreds of different HEAs were extracted from studies reported in the period from 2010 to 2020.The results suggested that the well-known three-time relation(i.e.,hardness equals to three times the magnitude of strength)works for nearly all HEAs,except for a few brittle HEAs which show quite high hardness but low strength due to early fracture.However,for HEAs with different phase structures,different strengths should be applied in using the 3-time relation,i.e.,yield strength for low ductility body-centered cubic(BCC)HEAs and ultimate strength for highly plastic and work-hardenable face-centered cubic(FCC)HEAs.As for dual-phase or multi-phase HEAs,similar 3-time relations can be also found.The present approach sheds light on the mechanisms of hardness and also provides useful guidelines for quick estimation of strength from hardness for various HEAs.展开更多
2,5-dimethyfuran(DMF), which is produced from 5-hydroxymethyfurfural(HMF) by hydrodeoxygenation(HDO), is a high quality fuel due to the high heating value, the high octane number and the suitable boiling point. Select...2,5-dimethyfuran(DMF), which is produced from 5-hydroxymethyfurfural(HMF) by hydrodeoxygenation(HDO), is a high quality fuel due to the high heating value, the high octane number and the suitable boiling point. Selective hydrogenation of HMF into liquid fuel DMF has been widely researched. In this paper, Co_3O_4 catalyst was prepared by co-precipitation and was reduced at different temperatures to form Co–CoO_x catalysts. The characterization of catalysts was tested by XRD, TEM, XPS, TPR, BET and NH3-TPD.Co–CoO_x possessed a high amount of Co metal and CoO_x acidic sites, wherein Co worked as the active hydrogenation sites and CoO_x acted as the acid promoter to facilitate the selective HDO of HMF to DMF.The synergistic effect of Co–CoO_x is the key for HDO of HMF, obtaining 83.3% of DMF yield at 170 °C, 12 h and the reduction temperature of 400 °C. This method not only saves the catalyst cost, but also promotes the utilization of biomass energy.展开更多
Converting peanut shells into biochar by pyrolysis was considered an environmentally friendly and efficient method for agricultural solid waste disposal.The properties of peanut shell-derived biochar(PBC)under differe...Converting peanut shells into biochar by pyrolysis was considered an environmentally friendly and efficient method for agricultural solid waste disposal.The properties of peanut shell-derived biochar(PBC)under different temperature and its adsorption capacity of heavy metals were investigated.It was found that PBC400 exhibited the highest cumulative capability for heavy metals elimination in single solute because of its high specific surface area and rich functional groups.Furthermore,the competitive adsorption revealed that PBC had a substantial difference in adsorption affinity from diverse heavy metal ions,sorption capacity decreased as Pb2+>Cu2+>Cd2+>Ni2+>Zn2+,which was lower than in a single solute.The adsorption process using selected biochar was optimized with respect to p H,reaction time,adsorbent dose,and initial concentration of heavy metals.The kinetic data was well fitted with PSO model,and the Langmuir model was adopted for adsorption equilibrium data in both cases of single solutes and mixed solutes for all heavy metals,which indicated that the removal course was primarily explained by monolayer adsorption,and chemical adsorption occupied an important role.Therefore,peanut shells derived biochar could be a potential and green adsorbent for wastewater treatment.展开更多
Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce man...Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce many useful organic chemicals by oxidation,hydrogenation,polymerization,and ring-opening reactions.Among all derivatives,the oxidation product 2,5-furandicarboxylic acid(FDCA)is a promising alternative to petroleum-based terephthalic acid for the synthesis of biodegradable plastics.This review analytically discusses the recent progress in the thermocatalytic,electrocatalytic,and photocatalytic oxidation of HMF into FDCA,including catalyst screening,synthesis processes,and reaction mechanism.Rapid fundamental advances may be possible in non-precious metal and metal-free catalysts that are highly efficient under the base-free conditions,and external field-assisted processes like electrochemical or photoelectrochemical cells.展开更多
Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very sm...Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.展开更多
Dopamine(DA), one type of mussel-inspired biological molecules with adhesive nature and corrosion inhibitor property, are often used to functionalize the surfaces of various materials. Herein, we report the applicatio...Dopamine(DA), one type of mussel-inspired biological molecules with adhesive nature and corrosion inhibitor property, are often used to functionalize the surfaces of various materials. Herein, we report the application of polydopamine(PDA) microcapsules as novel nanocontainers for the purpose, loading corrosion inhibitor(benzotriazole) in its shell structure, and then were embedded into epoxy coatings to provide self-healing and anti-corrosion protection for carbon steel. Fast release of benzotriazole in acidic environment caused by local corrosion and the chelating effect of PDA-Fe^(3+)can synergistically promote the formation of protective film on bare steel surface, which endows coatings with self-healing functionality. Electrochemical impedance spectroscopy(EIS), local electrochemical impedance spectroscopy(LEIS), and spray tests were conducted to evaluate the active inhibition and corrosion resistance of the loaded coatings. The scratched coating with incorporation of nanocontainers presented better protection performance, exhibiting increased Ro(oxide layer resistance) and R ct(charge transfer resistance) during initial immersion periods. The EIS tests in long-term immersion were also performed to confirm the anti-corrosion effect of composited coatings. These results demonstrated that benzotriazole-decorated PDA capsules dramatically enhanced the self-healing properties and anti-corrosion performance of epoxy coatings with the synergistic help of PDA and benzotriazole.展开更多
Flexible electrochemical power sources are attracting increasing attentions for their unique advantages like flexibility, shape diversity, light weight and excellent mechanical properties. In this research, we discove...Flexible electrochemical power sources are attracting increasing attentions for their unique advantages like flexibility, shape diversity, light weight and excellent mechanical properties. In this research, we discover that the current collector can dramatically affect the performance of flexible electrochemical power sources with large size. For flexible air-breathing proton exchange membrane fuel cell (PEMFC), the performance could have more than 8 times increase by only adjusting the directions of current collectors. The different performances of different current collection types are mainly attributed to the diverse lengths of the electron transfer pathways. In addition, the conductivity of current collector can dramatically affect the capability of flexible PEMFCs with large-size. The flexible PEMFCs with thicker carbon nanotube membrane as current collector (low electric resistance) show higher ability. A mathematic model is successfully built in this work to further understand the performance. Moreover, the model and simulation are also applicable to other flexible power sources, such as flexible Li-ion battery and supercapacitor.展开更多
In this work,the stability of passive film for long-time immersed Cu-bearing L605(L605-Cu) alloy in the phosphate buffer solution(PBS) was studied by potentiodynamic polarization and electrochemical impedance spectros...In this work,the stability of passive film for long-time immersed Cu-bearing L605(L605-Cu) alloy in the phosphate buffer solution(PBS) was studied by potentiodynamic polarization and electrochemical impedance spectroscopy.The results showed that the impedance of passive film for L605-Cu alloy experienced an initial increase and subsequent stabilization with the increase in the immersion time.In addition,the plate count method was employed to assess the antibacterial durability of L605-Cu alloy against Escherichia coli after long-time immersion.The results indicated that the antibacterial rate of L605-Cu alloy presented a declining tendency with the immersion time prolonging.X-ray photoelectron spectroscopy(XPS) was used to analyze the change of the chemical composition in the passive film on L605-Cu alloy immersed in the PBS for different time.The results showed that Cu content and its compounds in the passive film gradually increased with the immersion time prolonging,hinting declined activity of Cu ions penetrating into the passive film,which resulted in a decrease in the antibacterial performance.展开更多
All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significa...All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB.展开更多
基金supported by the National Key R&D Program of China(Grant No.2022YFB2404901)the National Natural Science Foundation of China(Grant No.21975267)the Central Guidance on Local Science and Technology Development Fund of Liaoning Province(No.2022JH6/100100001).
文摘The high cost and complex modification process of carbon felt electrodes limits its further popularization in vanadium redox flow batteries(VFBs).By introducing low-cost melamine foam,nitrogen,phosphorus,and sulfur co-doped carbon nanotubes/melamine foam composite electrode(NPS-CNTs-CMF)is designed and fabricated via immersing melamine foam in a solution containing N,P,and S co-doped CNTs.The integration of modified CNTs significantly enhances the conductivity and hydrophilicity of the electrode.Moreover,the composite electrode also demonstrates outstanding electrocatalytic activity owing to the heteroatom doping that further inspired the electrocatalytic activity of CNTs.Density function theory cal-culations further uncover that introducing heteroatoms on CNTs not only promotes the adsorption of vanadium ions but also facilitates the electron transfer between vanadium ions and MF substrate.As a result,the battery loading with NPS-CNTs-CMF exhibits excellent battery performance,achieving energy efficiency of 80.12%at 300 mA cm^(-2).Additionally,the long-term cycling stability is attained over 200 consecutive charge-discharge cycles at 300 mA cm^(−2).This study provides a novel melamine foam mate-rial with low cost and simple modification,and this new composite structure stimulates the development of high-performance electrodes in VFBs.
基金Project supported by the National Key R&D Program of China(2022YFB3505003,2021YFB3502802)the Natural Science Foundation of Zhejiang Province(LQ23E010001)+3 种基金"Pioneer"and"Leading Goose"R&D program of Zhejiang(2022C01020)Key Research and Development Program of Ningbo City(2023Z093)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Program。
文摘Commercial N52 sintered NdFeB magnets were processed by grain boundary diffusion(GBD)with Dy-Co-M(M=Cu,AI)alloys.The coercivity of magnets greatly increase to 17.62 and 18.83 kOe respectively when diffusing Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)alloys,which are obviously higher than that of Dy58Co42GBD-treated magnet with 16.64 kOe,Further thermal stability studies indicate that the thermal stability of Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treated magnets is further improved compared to the Dy58Co42GBD-treated magnet The results show that th e temperature coefficients of remanence(20-120℃)are reduced from-0.148%/℃to-0.134%/℃and-0.132%/℃by Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)GBD-treatment,respectively.Besides,the irreversible magnetic flux losses(120℃)for Dy_(58)Co_(25)Cu_(17)and Dy_(58)Co_(25)Al_(17)diffusion magnets are 4.76%and 2.79%,respectively.Microstructural analyses demonstrate that the presence of Cu and Al elements reduces the excessive accumulation of Dy and Co on the surface in the diffusion magnets an d improves the diffusion depth and utilization of Dy and Co.Furthermore,the flow of Co from the triple junction phase to the thin grain boundary phase is promoted,which contributes to the uniform distribution of Co.In addition,the dynamic evolution of the magnetic domain structure during the temperature rise process was studied.This work provides insight into the preparation of high-performance and high-thermal stability magnets.
文摘The authors regret that an error in Fig.3E in this article was found while we reviewing the published data.An inadvertent mistake occurred in the process of assembling images.The picture of the Ms215μg/mL group was wrongly placed.
基金supported by Key-Area Research and Development Program of Guangdong Province(No.2023B0101040002)National Natural Science Foundation of China(Nos.62304143,52303092 and 62274172)Guangdong Basic and Applied Basic Research Fund(No.2022B1515120037).
文摘Copper metal is widely electroplated for microelectronic interconnections such as redistribution layers(RDL),pillar bumps,through silicon vias,etc.With advances of multilayered RDL,via-on-via structures have been developed for ultrahigh-density any-layer interconnection,which expects superconformal filling of interlayer low aspect-ratio vias jointly with coplanar lines and pads.However,it poses a great challenge to electrodeposition,because current via fill mechanisms are stemming from middle to high aspect-ratio(>0.8)vias and lacking applicability in low aspect-ratio(<0.3)RDL-vias,where via geometry related electric-flow fields coupling must be reconsidered.In the present work,a four-additive strategy has been developed for RDL-vias fill and thoroughly investigated from additive electrochemistry,in situ Raman spectroelectrochemistry,and quantum chemistry perspectives.A novel adsorbate configuration controlled(ACC)electrodeposition mechanism is established that at weak-convection bilateral edges and lower corners,the adsorbate displays a weakly-adsorbing configuration to assist accelerator-governed deposition,whereas at strong-convection center,the adsorbate exhibits a mildlyadsorbing configuration to promote leveler-determined inhibition.Deposit profiles can be tailored from dished,flat to domed,depending on predominance of leveler over accelerator.This study should lay theoretical and practical foundations in design and application of copper electroplating additives of multiple adsorbate configurations to cope with complicated interconnect scenarios.
基金the National Natural Science Foundation of China(62174170)the Natural Science Foundation of Guangdong Province(2024A1515010123)+4 种基金the Shenzhen Science and Technology Program(20220807020526001)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0670000)the Shenzhen Science and Technology Program(KJZD20230923114708018,KJZD20230923114710022)the Talent Support Project of Guangdong(2021TX06C101)the Shenzhen Basic Research(JCYJ20210324115406019).
文摘Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.
基金supported financially by the National Natural Science Foundation of China(No.51103172,51702335)the Zhejiang Nonprofit Technology Applied Research Program(No.2013C33190)+2 种基金the open project of the Beijing National Laboratory for Molecular Science(No.20140138)the CAS-EU S&T cooperation partner program(No.174433KYSB20150013)Ningbo Key Laboratory of Polymer Materials
文摘Silicon has been regarded as one of the most promising next generation lithium-ion battery anode. How- ever, the poor cyclic stability of the Si based anode has severely limited its practical applications, which is even worse with high mass loading density (〉1 mg cm^-2 ). A new concept has been developed to enhance the electrochemical performance of the Si nanoparticle anode. Silver nanoparticles are composited with the silicon nanoparticles in a facile way for the first time. It is found that the mechanical properties of the Si electrode have been significantly improved by the incorporation of the silver nanoparticles, leading to enhanced cyclic performance. With the Si/Ag mass ratio of 4:1, the reversible specific discharge capacity is retained as l 156 mA h g^-1 after 100 cycles at 200 mAg^-1, which is more than three times higher than that of the bare silicon (318 mA h g^-1 ). The rate performance has been effectively improved as well due to excellent electron conductivity of the silver nanoparticles.
基金funded by the Natural Science Foundation of China(No.51702335)open project of the Beijing National Laboratory for Molecular Science(No.20140138)+1 种基金the CASEU S&T cooperation partner program(No.174433KYSB20150013)the Key Laboratory of Bio-based Polymeric Materials of Zhejiang Province
文摘A facile scalable synthesis of hierarchical Sb/C micro-/nanohybrid has been addressed in this work, which possesses the advantages of both micrometer and nanometer scale structures as lithium-ion battery anode. Difunctional methacrylate monomers are used as solvent and carbon source as well. Liquid precursor of antimony(III) n-butoxide is dissolved in the resin monomer solution, and further incorporated into the cross-linking polymer network via photo polymerization. Through calcination in argon/hydrogen atmosphere, antimony nanoparticles are in situ formed by carbothermal reduction, and homogeneously embedded in the in situ formed micrometer sized carbon matrix. The morphology, structure, crys- tallinity, spatial dispersion, composition, and electrochemical performance of the Sb/C micro-/nanohybrid are systemati- cally investigated. The cyclic and rate performance of the Sb/C micro-/nanohybrid anode have been effectively improved compared to the pure carbon anode. A reversible capacity of 362 mAh g-1 is achieved with a reasonable mass loading density after 300 cycles at 66 mA g-1, corresponding to capacity retention of 79%. With reducing mass loading density, the reversible capacity reaches 793 mAh g-1 after 100 cycles. Moreover, the electrochemical performance of Sb/C micro-/nanohybrid as sodium-ion battery anode is also investigated in this study.
基金supported by the Major State Basic Research Development Program of China(973 Program)(No.2015CB755500)National Natural Science Foundation of China(Nos.31571013,21375141,81501580,81401521,81301272 and 81571745)+3 种基金Shenzhen Science and Technology Program(Nos.KQCX20140521115045447,JCYJ20150403091443298,JCYJ20130402092657771,JCYJ20150401145529015 and JCYJ20160229200902680)Instrument Developing Project of the CAS(No.YZ201439)Key International S&T Cooperation Project(No.2015DFH50230)Guangdong Natural Science Foundation of Research Team(2016A030312006)
文摘As one of near-infrared(NIR) fluorescent(FL) nanoprobes, gold nanoclusters(Au NCs) are delicated to passive-targeting tumors for NIR FL imaging, but which easily cleared by the kidneys for the small size(〈1.5 nm). Herein, the well-defined gold clusters nanoassembly(Au CNA) was synthesized by the selfassembly of Au NCs based on protein cross-linking approach. The as-prepared Au CNA demonstrated highly effective cellular uptake and precise tumor targeting compared to that of Au NCs. Moreover, with the irradiation of 660 nm laser, Au CNA generated largely reactive oxygen species(ROS) for photodynamic therapy(PDT). In vitro and [39TD$IF]in vivo PDT revealed that Au CNA exhibited largely cell death and significantly tumor removal at a low power density of 0.2 W/cm^2. It could be speculated that the laser-excited Au CNA produced photon energy, which further obtained electron from oxygen to generate radical species.Therefore, Au CNA as a photosensitizer could realize NIR FL imaging and NIR laser induced PDT.
基金This work was supported by the National Key R&D Program of China(2020YFA0710700 and 2017YFA0505400)the National Natural Science Foundation of China(52021002,21877103,22177109,and 32101121)+2 种基金Users with Excellence Program of Hefei Science Center CAS(2020HSC-UE016)the Fundamental Research Funds for the Central Universities(WK3450000007)Suzhou Scientific and Technological Project(SYG202017).
文摘Objective:A protein-based leaking-proof theranostic nanoplatform for dual-modality imaging-guided tumor photodynamic therapy(PDT)has been designed.Impact Statement:A site-specific conjugation of chlorin e6(Ce6)to ferrimagnetic ferritin(MFtn-Ce6)has been constructed to address the challenge of unexpected leakage that often occurs during small-molecule drug delivery.Introduction:PDT is one of the most promising approaches for tumor treatment,while a delivery system is typically required for hydrophobic photosensitizers.However,the nonspecific distribution and leakage of photosensitizers could lead to insufficient drug accumulation in tumor sites.Methods:An engineered ferritin was generated for site-specific conjugation of Ce6 to obtain a leaking-proof delivery system,and a ferrimagnetic core was biomineralized in the cavity of ferritin,resulting in a fluorescent ferrimagnetic ferritin nanoplatform(MFtn-Ce6).The distribution and tumor targeting of MFtn-Ce6 can be detected by magnetic resonance imaging(MRI)and fluorescence imaging(FLI).Results:MFtn-Ce6 showed effective dual-modality MRI and FLI.A prolonged in vivo circulation and increased tumor accumulation and retention of photosensitizer was observed.The time-dependent distribution of MFtn-Ce6 can be precisely tracked in real time to find the optimal time window for PDT treatment.The colocalization of ferritin and the iron oxide core confirms the high stability of the nanoplatform in vivo.The results showed that mice treated with MFtn-Ce6 exhibited marked tumor-suppressive activity after laser irradiation.Conclusion:The ferritin-based leaking-proof nanoplatform can be used for the efficient delivery of the photosensitizer to achieve an enhanced therapeutic effect.This method established a general approach for the dual-modality imagingguided tumor delivery of PDT agents.
基金sponsored by the National Natural Science Foundation of China(21905221,21805221)the Suzhou Technological innovation of key industries-research and development of key technologies(SGC2021118)。
文摘Free-standing silicon anodes with high proportion of active materials have aroused great attention;however,the mechanical stability and electrochemical performance are severely suppressed.Herein,to resolve the appeal issues,a free-standing anode with a"corrugated paper"shape on micro-scale and a topological crosslinking network on the submicron and nano-scale is designed.Essentially,an integrated three-dimensional electrode structure is constructed based on robust carbon nanotubes network with firmly anchored SiNPs via forming interlocking junctions.In which,the hierarchical interlocking structure is achieved by directional induction of the binder,which ensures well integration during cycling so that significantly enhances mechanical stability as well as electronic and ionic conductivity of electrodes.Benefiting from it,this anode exhibits outsta nding performance under harsh service conditions including high Si loading,ultrahigh areal capacity(33.2 mA h cm^(-2)),and high/low temperatures(-15-60℃),which significantly extends its practical prospect.Furthermore,the optimization mechanism of this electrode is explored to verify the crack-healing and structure-integration maintaining along cycling via a unique self-stabilization process.Thus,from both the fundamental and engineering views,this strategy offers a promising path to produce high-performance free-standing electrodes for flexible device applications especially facing volume effect challenges.
基金financially supported by the National Natural Science Foundation of China(No.51771205)Liao Ning Revitalization Talents Program(No.XLYC1808027)。
文摘High-entropy alloys(HEAs)with face-centered cubic(FCC)phase such as CoCrFeMnNi or CoCrNi generally exhibit ultra-high fracture toughness but relatively low strength.In contrast,body-centered cubic(BCC)HEAs often display higher strengths,but the few reports on fracture toughness measurement demonstrate low toughness values.Here we show that the BCC HfNbTaTiZr refractory HEA,which possesses a combination of high strength,good tensile ductility and excellent high-temperature properties,also exhibits a remarkably high fracture toughness.By using the"single specimen"compliance method for J-integral measurement according to the ASTM E1820–17 standard,its fracture toughness K_(JIC)was experimentally determined to be 210 MPa m^(1/2),which renders this HEA among the toughest metallic materials.The excellent damage tolerance makes the HEA promising for applications as high-temperature structural materials such as in aerospace field.
基金financially supported by the National Natural Science Foundation of China(NSFC)under Grant(No.51771205)the Youth Innovation Promotion Association of Chinese Academy of Sciences and the LiaoNing Revitalization Talents Program under Grant(No.XLYC1808027)。
文摘High-entropy alloys(HEAs)are composed of multiple principal elements and exhibit not only remarkable mechanical properties,but also promising potentials for developing numerous new compositions.To fully realize such potentials,highthroughput preparation and characterization technologies are especially useful;thereby,the fast evaluations of mechanical properties will be urgently required.Revealing the relation between strength and hardness is of significance for quickly predicting the strength of materials through simple hardness testing.However,up to now the strength-hardness relation for HEAs is still a puzzle.In this work,the relations between tensile or compressive strength and Vickers hardness of various HEAs with hundreds of compositions at room temperature are investigated,and finally,the solution for estimating the strengths of HEAs from their hardness values is achieved.Data for hundreds of different HEAs were extracted from studies reported in the period from 2010 to 2020.The results suggested that the well-known three-time relation(i.e.,hardness equals to three times the magnitude of strength)works for nearly all HEAs,except for a few brittle HEAs which show quite high hardness but low strength due to early fracture.However,for HEAs with different phase structures,different strengths should be applied in using the 3-time relation,i.e.,yield strength for low ductility body-centered cubic(BCC)HEAs and ultimate strength for highly plastic and work-hardenable face-centered cubic(FCC)HEAs.As for dual-phase or multi-phase HEAs,similar 3-time relations can be also found.The present approach sheds light on the mechanisms of hardness and also provides useful guidelines for quick estimation of strength from hardness for various HEAs.
基金financially supported by the National Natural Science Foundation of China(51576199 and 51536009)the Natural Science Fund of Guangdong Province(2017A030308010)
文摘2,5-dimethyfuran(DMF), which is produced from 5-hydroxymethyfurfural(HMF) by hydrodeoxygenation(HDO), is a high quality fuel due to the high heating value, the high octane number and the suitable boiling point. Selective hydrogenation of HMF into liquid fuel DMF has been widely researched. In this paper, Co_3O_4 catalyst was prepared by co-precipitation and was reduced at different temperatures to form Co–CoO_x catalysts. The characterization of catalysts was tested by XRD, TEM, XPS, TPR, BET and NH3-TPD.Co–CoO_x possessed a high amount of Co metal and CoO_x acidic sites, wherein Co worked as the active hydrogenation sites and CoO_x acted as the acid promoter to facilitate the selective HDO of HMF to DMF.The synergistic effect of Co–CoO_x is the key for HDO of HMF, obtaining 83.3% of DMF yield at 170 °C, 12 h and the reduction temperature of 400 °C. This method not only saves the catalyst cost, but also promotes the utilization of biomass energy.
基金financially supported by State’s Key Project of Research and Development Plan,China(y804091001)National Natural Science Foundation of China(51776211)Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(GML2019ZD0101)。
文摘Converting peanut shells into biochar by pyrolysis was considered an environmentally friendly and efficient method for agricultural solid waste disposal.The properties of peanut shell-derived biochar(PBC)under different temperature and its adsorption capacity of heavy metals were investigated.It was found that PBC400 exhibited the highest cumulative capability for heavy metals elimination in single solute because of its high specific surface area and rich functional groups.Furthermore,the competitive adsorption revealed that PBC had a substantial difference in adsorption affinity from diverse heavy metal ions,sorption capacity decreased as Pb2+>Cu2+>Cd2+>Ni2+>Zn2+,which was lower than in a single solute.The adsorption process using selected biochar was optimized with respect to p H,reaction time,adsorbent dose,and initial concentration of heavy metals.The kinetic data was well fitted with PSO model,and the Langmuir model was adopted for adsorption equilibrium data in both cases of single solutes and mixed solutes for all heavy metals,which indicated that the removal course was primarily explained by monolayer adsorption,and chemical adsorption occupied an important role.Therefore,peanut shells derived biochar could be a potential and green adsorbent for wastewater treatment.
基金supported by Chinese Academy of Sciences(QYZDB-SSW-JSC037)Natural Science Foundation of Zhejiang Province(LY19B030003,LQ19B060002)+1 种基金Ningbo Science and Technology Bureau(2018B10056,2019B10096)Fujian Institute of Innovation(FJCXY18020202)。
文摘Biomass conversion to value-added chemicals has received tremendous attention for solving global warming issues and fossil fuel depletion.5-Hydroxymethylfurfural(HMF)is a key bio-based platform molecule to produce many useful organic chemicals by oxidation,hydrogenation,polymerization,and ring-opening reactions.Among all derivatives,the oxidation product 2,5-furandicarboxylic acid(FDCA)is a promising alternative to petroleum-based terephthalic acid for the synthesis of biodegradable plastics.This review analytically discusses the recent progress in the thermocatalytic,electrocatalytic,and photocatalytic oxidation of HMF into FDCA,including catalyst screening,synthesis processes,and reaction mechanism.Rapid fundamental advances may be possible in non-precious metal and metal-free catalysts that are highly efficient under the base-free conditions,and external field-assisted processes like electrochemical or photoelectrochemical cells.
基金partially supported by the Jiangsu Province Science Foundation for Youths (No. BK20170431)the National Natural Science Foundation of China (No. 61604171)。
文摘Laser photovoltaic devices converting 1064 nm light energy into electric energy present a promising prospect in wireless energy transmission due to the commercial availability of high power 1064 nm lasers with very small divergence. Besides their high conversion efficiency, a high output voltage is also expected in a laser energy transmission system. Meanwhile,1064 nm InGaAsP multi-junction laser power converters have been developed using p^+-InGaAs/n^+-InGaAs tunnel junctions to connect sub-cells in series to obtain a high output voltage. The triple-junction laser power converter structures are grown on p-type InP substrates by metal-organic chemical vapor deposition(MOCVD), and InGaAsP laser power converters are fabricated by conventional photovoltaic device processing. The room-temperature I–V measurements show that the 1 × 1 cm^2 triplejunction InGaAsP laser power converters demonstrate a conversion efficiency of 32.6% at a power density of 1.1 W/cm^2, with an open-circuit voltage of 2.16 V and a fill factor of 0.74. In this paper, the characteristics of the laser power converters are analyzed and ways to improve the conversion efficiency are discussed.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China(No.51825505)the National Natural Science Foundation of China(No.51905278)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA13040601)the Special Research Funding from the Marine Biotechnology and Marine Engineering Discipline Group in Ningbo University。
文摘Dopamine(DA), one type of mussel-inspired biological molecules with adhesive nature and corrosion inhibitor property, are often used to functionalize the surfaces of various materials. Herein, we report the application of polydopamine(PDA) microcapsules as novel nanocontainers for the purpose, loading corrosion inhibitor(benzotriazole) in its shell structure, and then were embedded into epoxy coatings to provide self-healing and anti-corrosion protection for carbon steel. Fast release of benzotriazole in acidic environment caused by local corrosion and the chelating effect of PDA-Fe^(3+)can synergistically promote the formation of protective film on bare steel surface, which endows coatings with self-healing functionality. Electrochemical impedance spectroscopy(EIS), local electrochemical impedance spectroscopy(LEIS), and spray tests were conducted to evaluate the active inhibition and corrosion resistance of the loaded coatings. The scratched coating with incorporation of nanocontainers presented better protection performance, exhibiting increased Ro(oxide layer resistance) and R ct(charge transfer resistance) during initial immersion periods. The EIS tests in long-term immersion were also performed to confirm the anti-corrosion effect of composited coatings. These results demonstrated that benzotriazole-decorated PDA capsules dramatically enhanced the self-healing properties and anti-corrosion performance of epoxy coatings with the synergistic help of PDA and benzotriazole.
基金financial support granted by Ministry of Science and Technology of China(Nos. 2016YFE0105700, 2016YFA0200700)the National Natural Science Foundation of China (Nos. 21373264, 21573275)+2 种基金China Postdoctoral Science Foundation(No. 2018M632406)the Science and Technology Project of Nanchang(No. 2017-SJSYS-008)the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Flexible electrochemical power sources are attracting increasing attentions for their unique advantages like flexibility, shape diversity, light weight and excellent mechanical properties. In this research, we discover that the current collector can dramatically affect the performance of flexible electrochemical power sources with large size. For flexible air-breathing proton exchange membrane fuel cell (PEMFC), the performance could have more than 8 times increase by only adjusting the directions of current collectors. The different performances of different current collection types are mainly attributed to the diverse lengths of the electron transfer pathways. In addition, the conductivity of current collector can dramatically affect the capability of flexible PEMFCs with large-size. The flexible PEMFCs with thicker carbon nanotube membrane as current collector (low electric resistance) show higher ability. A mathematic model is successfully built in this work to further understand the performance. Moreover, the model and simulation are also applicable to other flexible power sources, such as flexible Li-ion battery and supercapacitor.
基金financially supported by the National Natural Science Foundation of China (Nos.51771199, 51631009 and 51501188)the National Key Research and Development Program (No.2016YFB0300205)。
文摘In this work,the stability of passive film for long-time immersed Cu-bearing L605(L605-Cu) alloy in the phosphate buffer solution(PBS) was studied by potentiodynamic polarization and electrochemical impedance spectroscopy.The results showed that the impedance of passive film for L605-Cu alloy experienced an initial increase and subsequent stabilization with the increase in the immersion time.In addition,the plate count method was employed to assess the antibacterial durability of L605-Cu alloy against Escherichia coli after long-time immersion.The results indicated that the antibacterial rate of L605-Cu alloy presented a declining tendency with the immersion time prolonging.X-ray photoelectron spectroscopy(XPS) was used to analyze the change of the chemical composition in the passive film on L605-Cu alloy immersed in the PBS for different time.The results showed that Cu content and its compounds in the passive film gradually increased with the immersion time prolonging,hinting declined activity of Cu ions penetrating into the passive film,which resulted in a decrease in the antibacterial performance.
基金supported by the Outstanding Youth Fund Project by the Department of Science and Technology of Jiangsu Province(Grant No.BK20220045)the Key R&D Project funded by the Department of Science and Technology of Jiangsu Province(Grant No.BE2020003)+6 种基金Key Program-Automobile Joint Fund of National Natural Science Foundation of China(Grant No.U1964205)General Program of National Natural Science Foundation of China(Grant No.51972334)General Program of National Natural Science Foundation of Beijing(Grant No.2202058)Cultivation project of leading innovative experts in Changzhou City(CQ20210003)National Overseas High-level Expert recruitment Program(Grant No.E1JF021E11)Talent Program of Chinese Academy of Sciences,“Scientist Studio Program Funding”from Yangtze River Delta Physics Research Center,and Tianmu Lake Institute of Advanced Energy Storage Technologies(Grant No.TIESSS0001)Science and Technology Research Institute of China Three Gorges Corporation(Grant No.202103402)
文摘All-solid-state Li metal batteries(ASSLBs)using inorganic solid electrolyte(SE)are considered promising alternatives to conventional Li-ion batteries,offering improved safety and boosted energy density.While significant progress has been made on improving the ionic conductivity of SEs,the degradation and instability of Li metal/inorganic SE interfaces have become the critical challenges that limit the coulombic efficiency,power performance,and cycling stability of ASSLBs.Understanding the mechanisms of complex/dynamic interfacial phenomena is of great importance in addressing these issues.Herein,recent studies on identifying,understanding,and solving interfacial issues on anode side in ASSLBs are comprehensively reviewed.Typical issues at Li metal/SE interface include Li dendrite growth/propagation,SE cracking,physical contact loss,and electrochemical reactions,which lead to high interfacial resistance and cell failure.The causes of these issues relating to the chemical,physical,and mechanical properties of Li metal and SEs are systematically discussed.Furthermore,effective mitigating strategies are summarized and their effects on suppressing interfacial reactions,improving interfacial Li-ion transport,maintaining interfacial contact,and stabilizing Li plating/stripping are highlighted.The in-depth mechanistic understanding of interfacial issues and complete investigations on current solutions provide foundations and guidance for future research and development to realize practical application of high-performance ASSLB.