The idea to replicate in a machine human consciousness,understood as an immediate first-person subjective experience,becomes one of the greatest challenges of our time.Scientific understanding of the nature of phenome...The idea to replicate in a machine human consciousness,understood as an immediate first-person subjective experience,becomes one of the greatest challenges of our time.Scientific understanding of the nature of phenomenal consciousness may require an expansion of the scientific method itself.While this resolution is postponed,the task of reproducing the consciousness phenomenon in a computer should be approached within the framework of functionalism.Proposed so far theories of this sort appear problematic.An approach to implementing humanlike consciousness is proposed here based on BICA(biologically inspired cognitive architectures)combined with LLM(large language models).The concept is illustrated by example of a virtual tutor.It is argued that final solutions can be obtained in a purely neuromorphic form,which will enable their further adaptation,growth,and evolution.We start from discussion of the ontological problem of consciousness and its temporary nonreductive solution,which makes a scientific study possible.The main hypothesis for the proposed study is formulated based on the BICA Challenge in terms of the eBICA cognitive architecture.Only the limited case of socially emotional consciousness is analyzed as example.It is explained how LLM,being not conscious on their own,accessible via ChatGPT,can be connected to eBICA,used to build a conscious prototype and validate its claimed property.Selected example of a virtual tutor further illustrates how this technology will allow the tutor to develop human-level teacher-student relationships that will increase the efficiency of tutoring.Future prospects for the proposed direction of research include a variety of sentient agents to be created for the many practical human needs with the possibility of their further autonomous evolution.展开更多
The interaction between the lactate receptor GPR81(also known as hydroxycarboxylic acid receptor 1,or HCAR1)and Splicing Factor Proline-and Glutamine-Rich protein promotes the tumor cell malignancy.GPR81 nuclear trans...The interaction between the lactate receptor GPR81(also known as hydroxycarboxylic acid receptor 1,or HCAR1)and Splicing Factor Proline-and Glutamine-Rich protein promotes the tumor cell malignancy.GPR81 nuclear translocation plays an important role in driving cancer progression and could serve as a potential therapeutic target.Yang et al concluded in their study that lactate and its receptor,GPR81,play crucial roles in cancer progression,and are key players in linking the lactate-rich tumor microenvironment to cancer cell behavior.The ability of nuclear GPR81 to directly regulate gene expression,combined with extracellular matrix-mediated mechanical signaling,creates a potentially robust system for the coordinated adaptation and survival of cancer cells.Understanding these interactions could lead to the discovery of new therapeutic targets and improved treatment strategies for cancer.展开更多
Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunctio...Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.展开更多
Cold spray(CS)has been attracting an increasing interest due to low heat input,which avoids grain growth and high thermal stress.This feature is beneficial for high damping Mn-Cu alloy through limiting oxidation and f...Cold spray(CS)has been attracting an increasing interest due to low heat input,which avoids grain growth and high thermal stress.This feature is beneficial for high damping Mn-Cu alloy through limiting oxidation and formation of hot cracks.However,high dislocation density formed because of extensive plastic deformation,pores,and cracks result in the low damping capacity in the as-deposited Mn-Cu alloy.New strategy was introduced for improving damping capacity in cold sprayed Mn-20Cu-5Ni-2Fe(M2052 at%)alloy with different particle sizes(below 25μm and between 15 and 53μm).The 15-53μm powder has high yield strength and plastic deformation resistance,which leads to a large number of defects and non-bonded interface between powders due to insufficient plastic deformation.Ageing treatment at 420℃leads to spinodal decomposition of the fcc-austenite,and the formation of Mn-rich matrix and Cu-rich nanoscale network structure is found.Under the same ageing conditions,the spinodal decomposition level of the fcc-austenite in the CS M2052 alloy with the particles of 15-53μm is higher than that with the particles of<25μm,which results from the difference in the grain size.As a result,the damping capacity in the CS M2052 samples with particle size of 15-53μm is higher compared with the CS M2052 sample with particle size of<25μm.There is a significant increase in the damping capacity in the CS M2052 samples after HIP treatment,which can effectively reduce the internal defects and improve the bonding properties between powders.展开更多
Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of lo...Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.展开更多
Regulatory changes in senescent cells could potentially affect the composition of extracellular vehicles(EVs),specifically altering their size and cargo.As a result,the released senescent EVs contain an unpredictable ...Regulatory changes in senescent cells could potentially affect the composition of extracellular vehicles(EVs),specifically altering their size and cargo.As a result,the released senescent EVs contain an unpredictable cocktail of growth factors and cytokines.These biomolecules have dual effects,potentially guiding the induction of senescence in affected cells and promoting an inflammation-related“domino effect”within the cellular environment,ultimately leading to tissue inflammaging.展开更多
Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the ...Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.展开更多
In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possibl...In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.展开更多
A generalized kinetic model of atomic level populations in an optically dense plasma excited by laser pulses of arbitrary duration is formulated and studied.This model is based on a nonstationary expression for the pr...A generalized kinetic model of atomic level populations in an optically dense plasma excited by laser pulses of arbitrary duration is formulated and studied.This model is based on a nonstationary expression for the probability of excitation of an atomic transition and takes into account the effects of laser pulse penetration into an optically dense medium.A universal formula for the excitation probability as a function of time and propagation length is derived and applied to the case of a Lorentzian spectral profile of an atomic transition excited by a laser pulse with a Gaussian envelope.The features of nonstationary excitation probabilities are presented for different optical depths of the plasma,laser pulse durations,and carrier frequencies.The formulas derived here will be useful for the description of atomic populations excited by laser pulses under realistic conditions of dense plasmas.展开更多
The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser ...The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser pulses with relativistic intensities of up to 10^(22) W/cm^(2).The plasma parameters are determined by X-ray spectroscopy.The results show that most of the laser energy is absorbed by the plasma at solid density,indicating that no pre-plasma is generated in the current experimental setup.展开更多
Nanofluids have great potential for solar energy harvesting due to their suitable optical and thermophysical properties.One of the promising applications of nanofluids is utilization in solar collectors with the direc...Nanofluids have great potential for solar energy harvesting due to their suitable optical and thermophysical properties.One of the promising applications of nanofluids is utilization in solar collectors with the direct absorption of light(DASC).The design of a DASC requires detailed knowledge of the optical properties of nanofluids,which can be significantly affected by the particle size distribution.The paper presents the method to take into account the particle size distribution when calculating nanofluid extinction spectra.To validate the proposed model,the particle size distribution and spectral absorbance were measured for aqueous suspension with multi-walled graphite nanotubes;the minimum size of primary nanoparticles was 49 nm.The proposed model is compared with experiments demonstrating the concentration averaged and maximum discrepancies of 6.6%and 32.2%against 12.6%and 77.7%for a model assuming a monosized suspension.展开更多
This article reports the various methods used to assess diaphragmatic function by ultrasonography.The excursions of the two hemidiaphragms can be measured using two-dimensional or M-mode ultrasonography,during respira...This article reports the various methods used to assess diaphragmatic function by ultrasonography.The excursions of the two hemidiaphragms can be measured using two-dimensional or M-mode ultrasonography,during respiratory maneuvers such as quiet breathing,voluntary sniffing and deep inspiration.On the zone of apposition to the rib cage for both hemidiaphragms,it is possible to measure the thickness on expiration and during deep breathing to assess the percentage of thickening during inspiration.These two approaches make it possible to assess the quality of the diaphragmatic function and the diagnosis of diaphragmatic paralysis or dysfunction.These methods are particularly useful in circumstances where there is a high risk of phrenic nerve injury or in diseases affecting the contractility or the motion of the diaphragm such as neuro-muscular diseases.Recent methods such as speckle tracking imaging and ultrasound shear wave elastography should provide more detailed information for better assessment of diaphragmatic function.展开更多
We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator ...We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator physics and technology.We will cover the generation of intense heavy ion beams starting from the ion source and follow the acceleration process and transport to the target.Intensity limitations and potential solutions to overcome these limitations are discussed.This is exemplified by citing examples from existing machines at the Gesellschaft fur Schwerionenforschung(GSI-Darmstadt),the Institute of Theoretical and Experimental Physics in Moscow(ITEP-Moscow),and the Institute of Modern Physics(IMP-Lanzhou).Facilities under construction like the FAIR facility in Darmstadt and the High Intensity Accelerator Facility(HIAF),proposed for China will be included.Developments elsewhere are covered where it seems appropriate along with a report of recent results and achievements.展开更多
We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond(UNCD)films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively st...We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond(UNCD)films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively stable, while that of grain boundaries(GBs)(Rb) significantly increases after the C~+ implantation, and decreases with the increase in the annealing temperature(Ta) from 650℃ to 1000℃. This implies that the C~+ implantation has a more significant impact on the conductivity of GBs. Conductive atomic force microscopy demonstrates that the number of conductive sites increases in GB regions at Ta above 900℃, owing to the formation of a nanographitic phase confirmed by high-resolution transmission electronic microscopy. Visible-light Raman spectra show that resistive trans-polyacetylene oligomers desorb from GBs at Ta above 900℃, which leads to lower Rb of samples annealed at 900 and 1000℃. With the increase in Ta to 1000℃, diamond grains become smaller with longer GBs modified by a more ordered nanographitic phase, supplying more conductive sites and leading to a lower Rb.展开更多
Experimental investigation has been carried out for laser ignition and combustion of nanothermites based on aluminum and oxides of copper,bismuth and molybdenum.Ultrasonic mixing of nanosized powders was used to produ...Experimental investigation has been carried out for laser ignition and combustion of nanothermites based on aluminum and oxides of copper,bismuth and molybdenum.Ultrasonic mixing of nanosized powders was used to produce compositions.For thermite ignition,initiating laser pulse with a maximum intensity of 770 W/cm2 was generated by a laser diode with a wavelength of 808 nm.The ignition delay times,the minimum initiation energy density,and the average burning rate at various thermite densities and mass fractions of components were determined by recording the emission of radiation of the reaction products using a multichannel pyrometer jointly with a high-speed video camera.The effect of adding carbon black on the threshold parameters of a laser pulse was also studied.Based on the obtained results,certain assumptions were put forward with regard to the mechanism of nanothermites’ignition by laser radiation and their burning.In particular,the assumptions were made on the two-stage process of the reaction initiation and jet burning mechanism of porous nanothermites.展开更多
This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the ...This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.展开更多
The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fibe...The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fiber laser is an effective method that can recover optical properties of the mirror surface. The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally researched. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of radiation effect on the deposited surface. Efficient cleaning is ensured by radiation with the power density of less than 107 W/cm2. At this relatively low power density, pollutions are removed in a solid phase and the thermal effect on the mirror is insignificant. Preliminary experiments of the metal mirrors cleaning by fiber laser radiation have demonstrated the possibility of hardware implementation techniques.展开更多
Polycrystalline diamond(PCD) films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition(MPCVD) at different process parameters,and their thermal conductivity(TC) is evaluated by a l...Polycrystalline diamond(PCD) films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition(MPCVD) at different process parameters,and their thermal conductivity(TC) is evaluated by a laser flash technique(LFT) in the temperature range of230-380 K.The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon(a-C) presence in the spectra.Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples,respectively.TC,as high as 1950 ± 230 W m-1 K-1 at room temperature,is measured for the most perfect material.A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established.展开更多
基金Supported by Russian Science Foundation(22-11-00213).
文摘The idea to replicate in a machine human consciousness,understood as an immediate first-person subjective experience,becomes one of the greatest challenges of our time.Scientific understanding of the nature of phenomenal consciousness may require an expansion of the scientific method itself.While this resolution is postponed,the task of reproducing the consciousness phenomenon in a computer should be approached within the framework of functionalism.Proposed so far theories of this sort appear problematic.An approach to implementing humanlike consciousness is proposed here based on BICA(biologically inspired cognitive architectures)combined with LLM(large language models).The concept is illustrated by example of a virtual tutor.It is argued that final solutions can be obtained in a purely neuromorphic form,which will enable their further adaptation,growth,and evolution.We start from discussion of the ontological problem of consciousness and its temporary nonreductive solution,which makes a scientific study possible.The main hypothesis for the proposed study is formulated based on the BICA Challenge in terms of the eBICA cognitive architecture.Only the limited case of socially emotional consciousness is analyzed as example.It is explained how LLM,being not conscious on their own,accessible via ChatGPT,can be connected to eBICA,used to build a conscious prototype and validate its claimed property.Selected example of a virtual tutor further illustrates how this technology will allow the tutor to develop human-level teacher-student relationships that will increase the efficiency of tutoring.Future prospects for the proposed direction of research include a variety of sentient agents to be created for the many practical human needs with the possibility of their further autonomous evolution.
文摘The interaction between the lactate receptor GPR81(also known as hydroxycarboxylic acid receptor 1,or HCAR1)and Splicing Factor Proline-and Glutamine-Rich protein promotes the tumor cell malignancy.GPR81 nuclear translocation plays an important role in driving cancer progression and could serve as a potential therapeutic target.Yang et al concluded in their study that lactate and its receptor,GPR81,play crucial roles in cancer progression,and are key players in linking the lactate-rich tumor microenvironment to cancer cell behavior.The ability of nuclear GPR81 to directly regulate gene expression,combined with extracellular matrix-mediated mechanical signaling,creates a potentially robust system for the coordinated adaptation and survival of cancer cells.Understanding these interactions could lead to the discovery of new therapeutic targets and improved treatment strategies for cancer.
基金financially supported by the National Natural Science Foundation of China(Nos.52362012,42077162,51978323)Natural Science Foundation of Jiangxi Province(No.2022ACB203014)+4 种基金Major Discipline Academic and Technical Leaders Training Program of Jiangxi Province(Nos.20213BCJ22018,20232BCJ22048)Natural Science Project of the Educational Department in Jiangxi Province(No.GJJ2201121)Natural Science Foundation of Nanchang Hangkong University(No.EA202202256)Educational Reform Project of Jiangxi Province(No.JXYJG-2022-135)Nanchang Hangkong University Educational Reform Project(Nos.sz2214,sz2213,JY22017,KCPY1806)。
文摘Photocatalytic H_(2)production from water splitting is a promising candidate for solving the increasing energy crisis and environmental issues.Herein we report a novel g-C_(3)N_(4)/Ag In_(x)S_(y)S-scheme heterojunction photocatalyst for water splitting into stoichiometric H_(2)and H_(2)O_(2)under visible light.The catalyst was prepared by depositing 3D bimetallic sulfide(Ag In_(x)S_(y))nanotubes onto 2D g-C_(3)N_(4)nanosheets.Owing to the special 3D-on-2D configuration,the photogenerated carriers could be rapidly transferred and effectively separated through the abundant interfacial heterostructures to avoid recombination,and therefore excellent performance for visible light-driven water splitting could be obtained,with a 24-h H_(2)evolution rate up to 237μmol g^(-1)h^(-1).Furthermore,suitable band alignment enables simultaneous H_(2)and H_(2)O_(2)production in a 1:1 stoichiometric ratio.H_(2)and H_(2)O_(2)were evolved on the conduction band of g-C_(3)N_(4)and on the valance band of Ag In_(x)S_(y),respectively.The novel 3D-on-2D configuration for heterojunction construction proposed in this work provided alternative research ideas toward photocatalytic reaction.
基金supported by Guangdong Natural Science Foundation(No.2024A1515011287)Guangdong Academy of Sciences Project(No.2021GDASYL-20210102002)+2 种基金GDAS’Project of Science and Technology Development(Nos.2022GDASZH-2022010103 and 2022GDASZH-2022010202-04)GuangDong Province Key-Area R&D Program(No.2020B0101340004)the Ministry of Science and Higher Education of the Russian Federation within the framework of the“World-class Science Center”program:Advanced Digital Technologies(No.075-15-2022-312 from 20 April 2022).
文摘Cold spray(CS)has been attracting an increasing interest due to low heat input,which avoids grain growth and high thermal stress.This feature is beneficial for high damping Mn-Cu alloy through limiting oxidation and formation of hot cracks.However,high dislocation density formed because of extensive plastic deformation,pores,and cracks result in the low damping capacity in the as-deposited Mn-Cu alloy.New strategy was introduced for improving damping capacity in cold sprayed Mn-20Cu-5Ni-2Fe(M2052 at%)alloy with different particle sizes(below 25μm and between 15 and 53μm).The 15-53μm powder has high yield strength and plastic deformation resistance,which leads to a large number of defects and non-bonded interface between powders due to insufficient plastic deformation.Ageing treatment at 420℃leads to spinodal decomposition of the fcc-austenite,and the formation of Mn-rich matrix and Cu-rich nanoscale network structure is found.Under the same ageing conditions,the spinodal decomposition level of the fcc-austenite in the CS M2052 alloy with the particles of 15-53μm is higher than that with the particles of<25μm,which results from the difference in the grain size.As a result,the damping capacity in the CS M2052 samples with particle size of 15-53μm is higher compared with the CS M2052 sample with particle size of<25μm.There is a significant increase in the damping capacity in the CS M2052 samples after HIP treatment,which can effectively reduce the internal defects and improve the bonding properties between powders.
基金supported by the Czech Academy of Sciences(Mobility Plus Project No.CNRS-23-12)A.M.F.was supported by the Russian Science Foundation(Grant No.20-12-00077).
文摘Coherent motion of particles in a plasma can imprint itself on radiation.The recent advent of high-power lasers—allowing the nonlinear inverse Compton-scattering regime to be reached—has opened the possibility of looking at collective effects in laser–plasma interactions.Under certain conditions,the collective interaction of many electrons with a laser pulse can generate coherent radiation in the hard x-ray regime.This perspective paper explains the limitations under which such a regime might be attained.
文摘Regulatory changes in senescent cells could potentially affect the composition of extracellular vehicles(EVs),specifically altering their size and cargo.As a result,the released senescent EVs contain an unpredictable cocktail of growth factors and cytokines.These biomolecules have dual effects,potentially guiding the induction of senescence in affected cells and promoting an inflammation-related“domino effect”within the cellular environment,ultimately leading to tissue inflammaging.
基金supported by the Czech Ministry of Education,Youth and Sports(Project No.CZ.02.2.69/0.0/0.0/18_053/0016980)the Grant Agency of the Czech Republic(Grant No.GM23-05027M).
文摘Directed x-rays produced in the interaction of sub-picosecond laser pulses of moderate relativistic intensity with plasma of near-critical density are investigated. Synchrotron-like (betatron) radiation occurs in the process of direct laser acceleration (DLA) of electrons in a relativisticlaser channel when the electrons undergo transverse betatron oscillations in self-generated quasi-static electric and magnetic fields. In anexperiment at the PHELIX laser system, high-current directed beams of DLA electrons with a mean energy ten times higher than the ponderomotive potential and maximum energy up to 100 MeV were measured at 10^(19) W/cm^(2)laser intensity. The spectrum of directed x-raysin the range of 5–60 keV was evaluated using two sets of Ross filters placed at 0°and 10°to the laser pulse propagation axis. The differential x-ray absorption method allowed for absolute measurements of the angular-dependent photon fluence. We report 10^(13) photons/sr withenergies >5 keV measured at 0°to the laser axis and a brilliance of 10^(21) photons s^(−1) mm^(−2) mrad−2(0.1%BW)−1. The angular distributionof the emission has an FWHM of 14°–16°. Thanks to the ultra-high photon fluence, point-like radiation source, and ultra-short emissiontime, DLA-based keV backlighters are promising for various applications in high-energy-density research with kilojoule petawatt-class laserfacilities.
基金supported by the Russian Science Foundation(Grant No.22-14-20001).
文摘In addition to their visible motion such as swimming(e.g.,with the help offlagella),bacteria can also exhibit nanomotion that is detectable only with highly sensitive instruments,and this study shows that it is possible to detect bacterial nanomotion using an AFM detection system.The results show that the nanomotion characteristics depend on the bacterial strain,and that nanomotion can be used to sense the metabolic activity of bacteria because the oscillations are sensitive to the food preferences of the bacteria and the type of surrounding medium.
基金supported by the Ministry of Science and Higher Education of the Russian Federation(Goszadaniye)No.075-03-2024-107.
文摘A generalized kinetic model of atomic level populations in an optically dense plasma excited by laser pulses of arbitrary duration is formulated and studied.This model is based on a nonstationary expression for the probability of excitation of an atomic transition and takes into account the effects of laser pulse penetration into an optically dense medium.A universal formula for the excitation probability as a function of time and propagation length is derived and applied to the case of a Lorentzian spectral profile of an atomic transition excited by a laser pulse with a Gaussian envelope.The features of nonstationary excitation probabilities are presented for different optical depths of the plasma,laser pulse durations,and carrier frequencies.The formulas derived here will be useful for the description of atomic populations excited by laser pulses under realistic conditions of dense plasmas.
基金carried out within the framework of Program 10 “Experimental laboratory astrophysics and geophysics,NCPM.”。
文摘The generation of a plasma with an ultrahigh energy density of 1.2 GJ/cm^(3)(which corresponds to about 12 Gbar pressure) is investigated by irradiating thin stainless-steel foils with high-contrast femtosecond laser pulses with relativistic intensities of up to 10^(22) W/cm^(2).The plasma parameters are determined by X-ray spectroscopy.The results show that most of the laser energy is absorbed by the plasma at solid density,indicating that no pre-plasma is generated in the current experimental setup.
基金The reported study was funded by RFBR,Project No.19-38-90306.
文摘Nanofluids have great potential for solar energy harvesting due to their suitable optical and thermophysical properties.One of the promising applications of nanofluids is utilization in solar collectors with the direct absorption of light(DASC).The design of a DASC requires detailed knowledge of the optical properties of nanofluids,which can be significantly affected by the particle size distribution.The paper presents the method to take into account the particle size distribution when calculating nanofluid extinction spectra.To validate the proposed model,the particle size distribution and spectral absorbance were measured for aqueous suspension with multi-walled graphite nanotubes;the minimum size of primary nanoparticles was 49 nm.The proposed model is compared with experiments demonstrating the concentration averaged and maximum discrepancies of 6.6%and 32.2%against 12.6%and 77.7%for a model assuming a monosized suspension.
文摘This article reports the various methods used to assess diaphragmatic function by ultrasonography.The excursions of the two hemidiaphragms can be measured using two-dimensional or M-mode ultrasonography,during respiratory maneuvers such as quiet breathing,voluntary sniffing and deep inspiration.On the zone of apposition to the rib cage for both hemidiaphragms,it is possible to measure the thickness on expiration and during deep breathing to assess the percentage of thickening during inspiration.These two approaches make it possible to assess the quality of the diaphragmatic function and the diagnosis of diaphragmatic paralysis or dysfunction.These methods are particularly useful in circumstances where there is a high risk of phrenic nerve injury or in diseases affecting the contractility or the motion of the diaphragm such as neuro-muscular diseases.Recent methods such as speckle tracking imaging and ultrasound shear wave elastography should provide more detailed information for better assessment of diaphragmatic function.
基金support of the German BMBF is acknowledged for many supporting grants for PRIOR,cryo-target development,beam diagnostics and material properties researchthe support of DFGRFBR(German Science Foundation-Russian Foundation of Basic Research)+1 种基金the Russian grant of Scientific school НШ-5814.2014.2 is acknowledgedgrateful for funding from National Natural Science Foundation of China NSFC grants Nos.:U1532263,11505248,11375034,11205225,11275241,and 11275238.
文摘We review the development of High Energy Density Physics(HEDP)with intense heavy ion beams as a tool to induce extreme states of matter.The development of this field connects intimately to the advances in accelerator physics and technology.We will cover the generation of intense heavy ion beams starting from the ion source and follow the acceleration process and transport to the target.Intensity limitations and potential solutions to overcome these limitations are discussed.This is exemplified by citing examples from existing machines at the Gesellschaft fur Schwerionenforschung(GSI-Darmstadt),the Institute of Theoretical and Experimental Physics in Moscow(ITEP-Moscow),and the Institute of Modern Physics(IMP-Lanzhou).Facilities under construction like the FAIR facility in Darmstadt and the High Intensity Accelerator Facility(HIAF),proposed for China will be included.Developments elsewhere are covered where it seems appropriate along with a report of recent results and achievements.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50972129 and 50602039)the International Science Technology Cooperation Program of China(Grant No.2014DFR51160)+3 种基金the National Key Research and Development Program of China(Grant No.2016YFE0133200)European Union’s Horizon 2020 Research and Innovation Staff Exchange(RISE)Scheme(Grant No.734578)One Belt and One Road International Cooperation Project from the Key Research and Development Program of Zhejiang Province,China(Grant No.2018C04021)Xinmiao Talents Program of Zhejiang Province,China(Grant No.2017R403078)
文摘We investigate the structural and electrical properties of carbon-ion-implanted ultrananocrystalline diamond(UNCD)films. Impedance spectroscopy measurements show that the impedance of diamond grains is relatively stable, while that of grain boundaries(GBs)(Rb) significantly increases after the C~+ implantation, and decreases with the increase in the annealing temperature(Ta) from 650℃ to 1000℃. This implies that the C~+ implantation has a more significant impact on the conductivity of GBs. Conductive atomic force microscopy demonstrates that the number of conductive sites increases in GB regions at Ta above 900℃, owing to the formation of a nanographitic phase confirmed by high-resolution transmission electronic microscopy. Visible-light Raman spectra show that resistive trans-polyacetylene oligomers desorb from GBs at Ta above 900℃, which leads to lower Rb of samples annealed at 900 and 1000℃. With the increase in Ta to 1000℃, diamond grains become smaller with longer GBs modified by a more ordered nanographitic phase, supplying more conductive sites and leading to a lower Rb.
基金supported by a grant for large scientific projects in priority areas of scientific and technological development No.13.1902.21.0035carried out at Federal Research Center for Chemical Physics,Russian Academy of Sciences(FRC CP RAS),Russian Academy of Sciences(RAS)financially supported by subsidies for the implementation of the state assignment on the topic No.0082-2019-0016。
文摘Experimental investigation has been carried out for laser ignition and combustion of nanothermites based on aluminum and oxides of copper,bismuth and molybdenum.Ultrasonic mixing of nanosized powders was used to produce compositions.For thermite ignition,initiating laser pulse with a maximum intensity of 770 W/cm2 was generated by a laser diode with a wavelength of 808 nm.The ignition delay times,the minimum initiation energy density,and the average burning rate at various thermite densities and mass fractions of components were determined by recording the emission of radiation of the reaction products using a multichannel pyrometer jointly with a high-speed video camera.The effect of adding carbon black on the threshold parameters of a laser pulse was also studied.Based on the obtained results,certain assumptions were put forward with regard to the mechanism of nanothermites’ignition by laser radiation and their burning.In particular,the assumptions were made on the two-stage process of the reaction initiation and jet burning mechanism of porous nanothermites.
文摘This research work proceeds from the assumption, which was still considered by Einstein, that the quantization of gravity does not require additional external procedures: quantum phenomena can be a consequence of the properties of the universal gravitational interaction, which maps any physical field upon the space-time geometry. Therefore, an attempt is made in this research work to reduce the quantization of physical fields in GRT to the space-time quantization. Three reasons for quantum phenomena are considered: Partition of space-time into a set of unconnected Novikov’s R- and T-domains impenetrable for light paths;the set is generated by the invariance of Einstein’s equations with respect to dual mappings;The existence of electric charge quanta of wormholes, which geometrically describe elementary particles in GRT. This gives rise to a discrete spectrum of their physical and geometric parameters governed by Diophantine equations. It is shown that the fundamental constants (electric charge, rest masses of an electron and a proton) are interconnected arithmetically;The existence of the so-called Diophantine catastrophe, when fluctuations in the values of physical constants tending to zero lead to fluctuations in the number of electric charges and the number of nucleons at the wormhole throats, which tend to infinity, so that the product of the increments of these numbers by the increment of physical constants forms a relation equivalent to the uncertainty relation in quantum mechanics. This suggests that space-time cannot but fluctuate, and, moreover, its fluctuations are bounded from below, so that all processes become chaotic, and the observables become averaged over this chaos.
文摘The development of cleaning optics and deposition-mitigating techniques is a key factor in the construction and operation of optical diagnostics in ITER. The cleaning of optical surface by pulsed radiation from a fiber laser is an effective method that can recover optical properties of the mirror surface. The possibility of cleaning metallic mirrors from films with complex composition by pulsed radiation from a fiber laser has been experimentally researched. It has been shown that the high initial reflection characteristics of optical elements can be recovered by choosing regimes of radiation effect on the deposited surface. Efficient cleaning is ensured by radiation with the power density of less than 107 W/cm2. At this relatively low power density, pollutions are removed in a solid phase and the thermal effect on the mirror is insignificant. Preliminary experiments of the metal mirrors cleaning by fiber laser radiation have demonstrated the possibility of hardware implementation techniques.
基金supported by the Russian Ministry of Education and Science(RMES),Agreement No.14.613.21.0021,unique ID No.RFMEFI61314X0021the Department ofScience & Technology(DST),India,grant No.GAP0246 under the joint RMES-DST Research Collaboration Agreement 'Development of large size polycrystalline CVD diamond material for optical windows and support rods in high power microwave tubes'
文摘Polycrystalline diamond(PCD) films 100 mm in diameter are grown by 915 MHz microwave plasma chemical vapor deposition(MPCVD) at different process parameters,and their thermal conductivity(TC) is evaluated by a laser flash technique(LFT) in the temperature range of230-380 K.The phase purity and quality of the films are assessed by micro-Raman spectroscopy based on the diamond Raman peak width and the amorphous carbon(a-C) presence in the spectra.Decreasing and increasing dependencies for TC with temperature are found for high and low quality samples,respectively.TC,as high as 1950 ± 230 W m-1 K-1 at room temperature,is measured for the most perfect material.A linear correlation between the TC at room temperature and the fraction of the diamond component in the Raman spectrum for the films is established.