Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors su...Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors such as NbTi and Nb3Sn,high-temperature superconductors such as Bi-2212,Bi-2223,YBCO,iron-based superconductors and MgB2.The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production,showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field.However,due to the insufficient intrinsic superconducting performance,low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields.Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability.High-temperature superconductors have greater advantages in high temperature and high field,but many of them are still in the stage of further performance improvement.Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure,and further optimization of intergranular connectivity is required.In addition,it is also necessary to further enhance their pinning ability.The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.展开更多
The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was syn...The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.展开更多
To guarantee the efficient and high-value reutilization of waste concrete from construction waste,the waste concrete was mechanically ground,and three degrees of fineness recycled concrete powder(RCP)were obtained by ...To guarantee the efficient and high-value reutilization of waste concrete from construction waste,the waste concrete was mechanically ground,and three degrees of fineness recycled concrete powder(RCP)were obtained by different grinding time.By analyzing the particle characteristics of RCP with different fineness,the filling-densification effect of cement-RCP cementitious material system was quantitatively investigated based on Andreasen,Fuller,and Aim-Goff models.In addition,the macroscopic mechanical properties of cement paste mixed with RCP were studied,and the influencing mechanisms of RCP on the microstructure of cement paste was revealed.Macroscopic research results show that the particle fineness of RCP after grinding is smaller than that of cement.When the RCP replaces 0%to 20%cement,the packing density based on the Aim-Goff model increases with the increase of RCP content,whereas the macro-mechanical properties first improve and then degrade with the increase of RCP content.Microscopic results show that at 5%RCP content,beneficial hydration products such as C-S-H and beneficial pore increase in cement-RCP paste;while at>15%content,beneficial products decrease and harmful substances such as Ca(OH)_(2)and harmful pore increases.These research findings suggest that the incorporation of RCP can make the cementitious system denser,and the appropriate RCP content can improve the macro-and microscopic properties of cement-based materials.展开更多
Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cann...Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cannot meet all clinical needs.In order to maximize therapeutic efficiency,herein,we fabricated a Tri-layer wound dressing,where the middle layer was fabricated via 3D-printing and composed of alginate,tragacanth and zinc oxide nanoparticles(ZnO NPs).Both upper and bottom layers were constructed using electrospinning technique;the upper layer was made of hydrophobic polycaprolactone to mimic epidermis,while the bottom layer consisted of Soluplus■ and insulin-like growth factor-1(IGF-1)to promote cell behavior.Swelling,water vapor permeability and tensile properties of the dressings were evaluated and the Tri-layer dressing exhibited impressive antibacterial activity and cell stimulation following by the release of ZnO NPs and IGF-1.Additionally,the Tri-layer dressing led to faster healing of full-thicknesswound in ratmodel compared to monolayer and Bilayer dressings.Overall,the evidence confirmed that the Trilayer wound dressing is extremely effective for full-thickness wound healing.展开更多
To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with g...To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.展开更多
The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L...The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the elastic and plastic constants.展开更多
A two-dimensional(2 D)SnNb_(2)O_(6)/amino-functionalized graphene(En-RGO)nanocomposite with a representative 2 D-2 D architecture has been constructed by an easy self-assembly approach and firstly investigated as anod...A two-dimensional(2 D)SnNb_(2)O_(6)/amino-functionalized graphene(En-RGO)nanocomposite with a representative 2 D-2 D architecture has been constructed by an easy self-assembly approach and firstly investigated as anode materials for secondary sodium-ion batteries.The SnNb_(2)O_(6)nanosheets are evenly anchored with the aminofunctionalized graphene through electrostatic attractive interplay between the negatively charged SnNb_(2)O_(6)and positively charged En-RGO after modification.As a result,a remarkable reversible capacity of 300 mAh·g^(-1)was obtained at 50 mA·g^(-1),and significantly,the En-RGO electrode could also deliver ultra-long calendar life up to1900 cycles with a high reversible capacity of200 mAh·g^(-1)at current of 500 mA·g^(-1).Such excellent electrochemical characteristics can be mainly ascribed to its fast pseudo-capacitive energy storage mechanism,and the capacitive contribution can even reach up to 90%at1.2 mV·s^(-1).展开更多
How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and un...How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.展开更多
Cellulose is a renewable biomass material and natural polymer which is abundantly available on Earth,and includes agricultural wastes,forestry residues,and woody materials.The excellent and smart characteristics of ce...Cellulose is a renewable biomass material and natural polymer which is abundantly available on Earth,and includes agricultural wastes,forestry residues,and woody materials.The excellent and smart characteristics of cellulose materials,such as lightweight,biocompatibility,biodegradability,high mechanical strength/stiffness and low thermal expansibility,have made cellulose a highpotential material for various industry applications.Cellulose has recently been discovered as a smart material in the electroactive polymers family which carries the name of cellulose-based electroactive paper(EAPap).The shear piezoelectricity in cellulose polymers is able to induce large displacement output,low actuation voltage,and low power consumption in the application of biomimetic sensors/actuators and electromechanical system.The present study provides an overview of biomass pretreatment from various lignocellulosic cellulose(LC)resources and nanocellulose production via TEMPO-mediated oxidation reaction,followed by the production of different types of EAPap versus its performance,and lastly the applications of EAPap in different areas and industries.Specifically,LC biomass consists mainly of cellulose having a small content of hemicelluloses and lignins which form a defensive inner structure against the degradation of plant cell wall.Thus,selective approaches are discussed to ensure proper extraction of cellulosic fibers from complex biomass for further minimization to nano-dimensions.In addition,a comprehensive review of the development of cellulose-based EAPap as well as fabrication,characterization,performance enhancement and applications of EAPap devices are discussed herein.展开更多
Many MXenes are efficient catalysts for MgH_(2)hydrogen storage material.Nevertheless,the synthesis of MXenes should consume a large amount of corrosive HF to etch out the Al layers from the transition metal aluminum ...Many MXenes are efficient catalysts for MgH_(2)hydrogen storage material.Nevertheless,the synthesis of MXenes should consume a large amount of corrosive HF to etch out the Al layers from the transition metal aluminum carbides or nitrides(MAX) phases,which is environmentally unfriendly.In this work,Ti_(3)AlCN MAX without HFetching was employed directly to observably enhance the kinetics and the cycling stability of MgH_(2).With addition of10 wt% Ti_(3)AlCN,the onset dehydrogenation temperature of MgH2 was dropped from 320 to 205℃,and the rehydrogenation of MgH2 under 6 MPa H2 began at as low as50℃.Furthermore,at 300℃,it could provide 6.2 wt% of hydrogen in 10 min.Upon cycling,the composite underwent an activation process during the initial 40 cycles,with the reversible capacity increased from 4.7 wt% to 6.5 wt%.After that,the capacity showed almost no attenuation for up to 100 cycles.The enhancing effect of Ti_(3)AICN on MgH_(2) was comparable to many MXenes.It was demonstrated that Ti_(3)AICN did not destabilize MgH_(2) but acted as an efficient catalyst for MgH_(2).Ti_(3)AICN was observed to be the active sites for the nucleation and growth of MgH_(2)and might also help in dissociation and recombination of hydrogen molecules.Such two factors are believed to contribute to the improvement of MgH_(2).This study not only provides a promising strategy for improving the hydrogen storage performances of MgH_(2) by using noncorrosive MAX materials,but also adds evidence of nucleation and growth of MgH_(2) on a catalyst.展开更多
Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling ...Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling performance.In this work,NbF_(5) was utilized to improve the cycling properties of the MgH_(2)-AlH_(3) composite.Cycling hydrogen desorption studies show that NbF_(5) significantly improves the cycling stability of MgH_(2)-AlH_(3).The MgH_(2)-AlH_(3)-NbF_(5) composite can release about 2.7 wt% of hydrogen at 300℃ for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than100 cycles.In comparison,the hydrogen desorption capacity of the MgH_(2)-AlH_(3) composite is decreasing with the cycle number increasing.The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles.Brunauer-Emmett-Teller(BET) surface area measurements show that the particle size of MgH_(2)-AlH_(3) composite decreases after cycling,which means pulverization of the composite.NbF_(5) can to some extent suppress the pulverization of the composite during cycling,which partially contributes to the improvement of the cycling hydrogen desorption properties of the material.展开更多
Anisotropic Pr-Fe-B films with soft-magnetic layer (Fe) and/or antiferromagnetic layer (Mn, FeMn or MnO) were prepared by direct-current (DC) magnetron sputtering on Si (100) substrates heated at 650℃. The in...Anisotropic Pr-Fe-B films with soft-magnetic layer (Fe) and/or antiferromagnetic layer (Mn, FeMn or MnO) were prepared by direct-current (DC) magnetron sputtering on Si (100) substrates heated at 650℃. The influence of four types' different structures on the magnetic properties of Pr-Fe-B films was investigated. The phase and magnetic properties were characterized by means of X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). Addition of anti-ferromagnetic layer enhances both the coercivity and the remanence ratios of Pr-Fe-B films with suitable structures. The interface number increases and the antiferromagnetic-ferromagnetic exchange interaction is likely to become stronger, which affect the improvement of magnetic properties. To further understand the influence of structures with soft-magnetic Fe layer and/or antifer- romagnetic FeMn layer on the magnetic properties of Pr-Fe-B hard-magnetic films, the thickness of Pr-Fe-B layer was designed to decrease from 600 to 50 nm. The improvement of magnetic properties becomes obvious in Mo(50 nm)/Pr-Fe-B(25 nm)Mo(2 nm)FeMn(20 nm)Mo (2 nm)Pr-Fe-B(25 nm)/Mo(50 rim) film.展开更多
Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-b...Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-bone density make Mg-based alloys good candidates for fabricating surgical bioimplants for use in orthopedic and traumatology treatments.To this end,nowadays additive manufacturing(AM)along with three-dimensional(3D)printing represents a promising manufacturing technique as it allows for the integration of bioimplant design and manufacturing processes specific to given applications.Meanwhile,this technique also faces many new challenges associated with the properties of Mg-based alloys,including high chemical reactivity,potential for combustion,and low vaporization temperature.In this review article,various AM processes to fabricate biomedical implants from Mg-based alloys,along with their metallic microstructure,mechanical properties,biodegradability,biocompatibility,and antibacterial properties,as well as various post-AM treatments were critically reviewed.Also,the challenges and issues involved in AM processes from the perspectives of bioimplant design,properties,and applications were identified;the possibilities and potential scope of the Mg-based scaffolds/implants are discussed and highlighted.展开更多
Most of the challenges experienced by many engineering materials originate from the surface which later leads to total failure,hence affecting the resultant mechanical properties and service life.However,these challen...Most of the challenges experienced by many engineering materials originate from the surface which later leads to total failure,hence affecting the resultant mechanical properties and service life.However,these challenges have been addressed thanks to the invention of a novel surface mechanical attrition treatment(SMAT)method which protects the material surface by generating a gradient-structured layer with improved strength and hardness without jeopardizing the ductility.The present work provides a comprehensive literature review on the mechanical properties of materials after SMAT including the hardness,tensile strength and elongation,and residual stress.Firstly,a brief introduction on the different forms of surface nanocrystallization is given to get a better understanding of the SMAT process and its advantages over other forms of surface treatments,and then the grain refinement mechanisms of materials by SMAT from the matrix region(base material)to the nanocrystallized layer are explained.The effects of fatigue,fracture,and wear of materials by the enhanced mechanical properties after SMAT are also discussed in detail.In addition,the various applications of SMAT ranging from automotive,photoelectric conversion,biomedical,diffusion,and 3 D-printing of materials are extensively discussed.The prospects and recent research trends in terms of mechanical properties of materials affected by SMAT are then summarized.展开更多
Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly ...Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.展开更多
Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor p...Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor phase deposition approaches were discussed. Prototype waveguide electro-optic modulators were fabricated using SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers.Promising electro-optic thin film materials including DTPT and PEPCOOH grown from the vapor phase were used for fabrication and test of electro-optic prototype modulators. Finally,the EO coefficient of tens of pm/V was obtained,which can sufficiently support high-speed and small size EO modulators.展开更多
In the mouth, biofilm formation occurs on all soft and hard surfaces. Microbial colonization on such surfaces is always preceded by the formation of a pellicle. The physicochemical surface properties of a pellicle are...In the mouth, biofilm formation occurs on all soft and hard surfaces. Microbial colonization on such surfaces is always preceded by the formation of a pellicle. The physicochemical surface properties of a pellicle are largely dependent on the physical and chemical nature of the underlying surface. Thus, the surface structure and composition of the underlying surface will influence on the initial bacterial adhesion. The aim of this review is to evaluate the influence of the surface roughness and the restorative material composition on the adhesion process of oral bacteria. Both in vitro and in vivo studies underline the importance of both variables in dental plaque formation. Rough surfaces will promote plaque formation and maturation. Candida species are found on acrylic dentures, but dentures coating and soaking of dentures in disinfectant solutions may be an effective method to prevent biofilm formation. Biofilms on gold and amalgam are thick, but with low viability. Glass-ionomer cement collects a thin biofilm with a low viability. Biofilms on composites cause surface deterioration, which enhances biofilm formation. Biofilms on ceramics are thin and highly viable.展开更多
Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-di...Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-dimensional vanadium carbide(VC) was prepared by an etching method using V_(4)AlC_(3) as a precursor and then employed to enhance the hydrogen storage properties of MgH_(2).The studied results indicate that VC-doped MgH_(2) can absorb hydrogen at room temperature and release hydrogen at 170℃. Moreover,it absorbs 5.0 wt.%of H_(2) within 9.8 min at 100℃ and desorbs 5.0 wt.% of H_(2) within 3.2 min at 300℃.The dehydrogenation apparent activation energy of VC-doped MgH_(2) is 89.3 ± 2.8 kJ/mol,which is far lower than that of additive-free MgH_(2)(138.5 ± 2.4 kJ/mol),respectively.Ab-initio simulations showed that VC can stretch Mg-H bonds and make the Mg-H bonds easier to break,which is responsible for the decrease of dehydrogenation temperature and conducive to accelerating the diffusion rate of hydrogen atoms,thus,the hydrogen storage properties of MgH_(2) are remarkable improved through addition of VC.展开更多
Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution ...Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution reaction(HER)in a mild acidic electrolyte system,facilitating aqueous zinc batteries competitive in next-generation energy storage devices.However,the HER and byproduct formation effectuated by water-splitting deteriorate the electrochemical performance of ZMA,limiting their application.In this study,a key factor in promoting the HER in carbon-based electrode materials(CEMs),which can provide a larger active surface area and guide uniform zinc metal deposition,was investigated using a series of threedimensional structured templating carbon electrodes(3D-TCEs)with different local graphitic orderings,pore structures,and surface properties.The ultramicropores of CEMs are the determining critical factors in initiating HER and clogging active surfaces by Zn(OH)2 byproduct formation,through a systematic comparative study based on the 3D-TCE series samples.When the 3D-TCEs had a proper graphitic structure with few ultramicropores,they showed highly stable cycling performances over 2000 cycles with average Coulombic efficiencies of≥99%.These results suggest that a well-designed CEM can lead to high-performance ZMA in aqueous zinc batteries.展开更多
Cellular material under high-velocity impacthas a typical feature oflayer-wise collapse.A cell-based finite element model is employed to simulate the direct impact of closed-cell foam, and one-dimensional velocity fie...Cellular material under high-velocity impacthas a typical feature oflayer-wise collapse.A cell-based finite element model is employed to simulate the direct impact of closed-cell foam, and one-dimensional velocity field distributionsareobtained to characterize thecrushing bandpropagating through a cellular material. An explicit expression of continuous velocity distribution is derivedbased on the features of velocity gradient distribution. The velocity distribution function is adopted to determine the dynamic stress-strain statesof cellular materials under dynamic loading.The local stress-strain history distribution reveals that sectional cells experience a process from the precursor of elastic behavior to the shock stress state, through the dynamic initial crushing state. A power-law relation between the dynamic initial crushing stress andthe strainrate isestablished, which confirms the strain-rate effect of cellular materials. By extracting the critical points immediately before the unloading stage on the local dynamic stress-strain history curves, the dynamic stress-strain statesof cellular materials are determined. They exhibit loading rate-dependence but are independent of the initial impact velocity.Furthermore, with the increase of relative density, the dynamic hardening behaviorof cellular specimen is enhanced and the crushing process event is advanced. The particle velocity-based analytical method is appliedto analyze the dynamic responses of cellular materials.This method is better than continuum-based shock models, since itdoes not require a pre-assumed constitutive relation.Therefore,the particle velocity-based analytical method proposed in this study may provide new ideas to carry out dynamic experimental measurement, which is especially applicable toinhomogeneous materials.展开更多
基金supported by Xi'an Science and Technology Plan Project(Grant No.2024JH-CGKP-0073)。
文摘Superconducting materials hold great potential in high field magnetic applications compared to traditional conductive materials.At present,practical superconducting materials include low-temperature superconductors such as NbTi and Nb3Sn,high-temperature superconductors such as Bi-2212,Bi-2223,YBCO,iron-based superconductors and MgB2.The development of low-temperature superconducting wires started earlier and has now entered the stage of industrialized production,showing obvious advantages in mechanical properties and cost under low temperature and middle-low magnetic field.However,due to the insufficient intrinsic superconducting performance,low-temperature superconductors are unable to exhibit excellent performance at high temperature or high fields.Further improvement of supercurrent carrying performance mainly depends on the enhancement of pinning ability.High-temperature superconductors have greater advantages in high temperature and high field,but many of them are still in the stage of further performance improvement.Many high-temperature superconductors are limited by the deficiency in their polycrystalline structure,and further optimization of intergranular connectivity is required.In addition,it is also necessary to further enhance their pinning ability.The numerous successful application instances of high-temperature superconducting wires and tapes also prove their tremendous potential in electric power applications.
文摘The high compacted density LiNi<sub>0.5-x</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub>Mg<sub>x</sub>O<sub>2</sub> cathode material for lithium-ion batteries was synthesized by high temperature solid-state method, taking the Mg element as a doping element and the spherical Ni<sub>0.5</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> (OH)<sub>2</sub>, Li<sub>2</sub>CO<sub>3</sub> as raw materials. The effects of calcination temperature on the structure and properties of the products were investigated. The structure and morphology of cathode materials powder were analyzed by X-ray diffraction spectroscopy (XRD) and scanning electronmicroscopy (SEM). The electrochemical properties of the cathode materials were studied by charge-discharge test and cyclic properties test. The results show that LiNi<sub>0.4985</sub>Co<sub>0.2</sub>Mn<sub>0.3</sub> Mg<sub>0.0015</sub>O<sub>2</sub> cathode material prepared at calcination temperature 930°C has a good layered structure, and the compacted density of the electrode sheet is above 3.68 g/cm<sup>3</sup>. The discharge capacity retention rate is more than 97.5% after 100 cycles at a charge-discharge rate of 1C, displaying a good cyclic performance.
基金Funded by the National Natural Science Foundation of China Project(Nos.52108219 and U21A20150)the Lanzhou University of Technology Hongliu Outstanding Young Talent Program,China(No.04-062407)。
文摘To guarantee the efficient and high-value reutilization of waste concrete from construction waste,the waste concrete was mechanically ground,and three degrees of fineness recycled concrete powder(RCP)were obtained by different grinding time.By analyzing the particle characteristics of RCP with different fineness,the filling-densification effect of cement-RCP cementitious material system was quantitatively investigated based on Andreasen,Fuller,and Aim-Goff models.In addition,the macroscopic mechanical properties of cement paste mixed with RCP were studied,and the influencing mechanisms of RCP on the microstructure of cement paste was revealed.Macroscopic research results show that the particle fineness of RCP after grinding is smaller than that of cement.When the RCP replaces 0%to 20%cement,the packing density based on the Aim-Goff model increases with the increase of RCP content,whereas the macro-mechanical properties first improve and then degrade with the increase of RCP content.Microscopic results show that at 5%RCP content,beneficial hydration products such as C-S-H and beneficial pore increase in cement-RCP paste;while at>15%content,beneficial products decrease and harmful substances such as Ca(OH)_(2)and harmful pore increases.These research findings suggest that the incorporation of RCP can make the cementitious system denser,and the appropriate RCP content can improve the macro-and microscopic properties of cement-based materials.
基金support of Isfahan University of Medical Sciences(Project code No.#1401262).
文摘Mimicking the hierarchical structure of the skin is one of the most important strategies in skin tissue engineering.Monolayer wound dressings are usually not able to provide several functions at the same time and cannot meet all clinical needs.In order to maximize therapeutic efficiency,herein,we fabricated a Tri-layer wound dressing,where the middle layer was fabricated via 3D-printing and composed of alginate,tragacanth and zinc oxide nanoparticles(ZnO NPs).Both upper and bottom layers were constructed using electrospinning technique;the upper layer was made of hydrophobic polycaprolactone to mimic epidermis,while the bottom layer consisted of Soluplus■ and insulin-like growth factor-1(IGF-1)to promote cell behavior.Swelling,water vapor permeability and tensile properties of the dressings were evaluated and the Tri-layer dressing exhibited impressive antibacterial activity and cell stimulation following by the release of ZnO NPs and IGF-1.Additionally,the Tri-layer dressing led to faster healing of full-thicknesswound in ratmodel compared to monolayer and Bilayer dressings.Overall,the evidence confirmed that the Trilayer wound dressing is extremely effective for full-thickness wound healing.
基金Funded by the National Natural Science Foundation of China(Nos.5226804252468035)。
文摘To investigate the pore structure of graphene oxide modified polymer cement mortar(GOPM)under salt-freeze-thaw(SFT)coupling effects and its impact on deterioration,this study modifies polymer cement mortar(EMCM)with graphene oxide(GO).The micro-pore structure of GOPM is characterized using LF-NMR and SEM.Fractal theory is applied to calculate the fractal dimension of pore volume,and the deterioration patterns are analyzed based on the evolution characteristics of capillary pores.The experimental results indicate that,after 25 salt-freeze-thaw cycles(SFTc),SO2-4 ions penetrate the matrix,generating corrosion products that fill existing pores and enhance the compactness of the specimen.As the number of cycles increases,the ongoing formation and expansion of corrosion products within the matrix,combined with persistent freezing forces,and result in the degradation of the pore structure.Therefore,the mass loss rate(MLR)of the specimens shows a trend of first decreasing and then increasing,while the relative dynamic elastic modulus(RDEM)initially increases and then decreases.Compared to the PC group specimens,the G3PM group specimens show a 28.71% reduction in MLR and a 31.42% increase in RDEM after 150 SFTc.The fractal dimensions of the transition pores,capillary pores,and macropores in the G3PM specimens first increase and then decrease as the number of SFTc increases.Among them,the capillary pores show the highest correlation with MLR and RDEM,with correlation coefficients of 0.97438 and 0.98555,respectively.
基金supported by the National Natural Science Foundation of China (11032001)the K.C.Wong Magna Fund in Ningbo University
文摘The propagation of shock waves in a cellular bar is systematically studied in the framework of continuum solids by adopting two idealized material models, viz. the dynamic rigid, perfectly plastic, locking (D-R-PP-L) model and the dynamic rigid, linear hardening plastic, locking (D-R-LHP-L) model, both considering the effects of strain-rate on the material properties. The shock wave speed relevant to these two models is derived. Consider the case of a bar made of one of such material with initial length L 0 and initial velocity v i impinging onto a rigid target. The variations of the stress, strain, particle velocity, specific internal energy across the shock wave and the cease distance of shock wave are all determined analytically. In particular the "energy conservation condition" and the "kinematic existence condition" as proposed by Tan et al. (2005) is re-examined, showing that the "energy conservation condition" and the consequent "critical velocity", i.e. the shock can only be generated and sustained in R-PP-L bars when the impact velocity is above this critical velocity, is incorrect. Instead, with elastic deformation, strain-hardening and strain-rate sensitivity of the cellular materials being considered, it is appropriate to redefine a first and a second critical impact velocity for the existence and propagation of shock waves in cellular solids. Starting from the basic relations for shock wave propagating in D-R-LHP-L cellular materials, a new method for inversely determining the dynamic stress-strain curve for cellular materials is proposed. By using e.g. a combination of Taylor bar and Hopkinson pressure bar impact experimental technique, the dynamic stress-strain curve of aluminum foam could bedetermined. Finally, it is demonstrated that this new formulation of shock theory in this one-dimensional stress state can be generalized to shocks in a one-dimensional strain state, i.e. for the case of plate impact on cellular materials, by simply making proper replacements of the elastic and plastic constants.
基金the National Natural Science Foundation of China(Nos.51871113 and21601071)the Natural Science Foundation of Jiangsu Province(No.BK20160211)the Key Research and Development Program of Xuzhou(No.KC17004)。
文摘A two-dimensional(2 D)SnNb_(2)O_(6)/amino-functionalized graphene(En-RGO)nanocomposite with a representative 2 D-2 D architecture has been constructed by an easy self-assembly approach and firstly investigated as anode materials for secondary sodium-ion batteries.The SnNb_(2)O_(6)nanosheets are evenly anchored with the aminofunctionalized graphene through electrostatic attractive interplay between the negatively charged SnNb_(2)O_(6)and positively charged En-RGO after modification.As a result,a remarkable reversible capacity of 300 mAh·g^(-1)was obtained at 50 mA·g^(-1),and significantly,the En-RGO electrode could also deliver ultra-long calendar life up to1900 cycles with a high reversible capacity of200 mAh·g^(-1)at current of 500 mA·g^(-1).Such excellent electrochemical characteristics can be mainly ascribed to its fast pseudo-capacitive energy storage mechanism,and the capacitive contribution can even reach up to 90%at1.2 mV·s^(-1).
文摘How the wave propagation analysis plays a key role in the studies of dynamic response of materials at high strain rates is analyzed. For the wave propagation technique, the followings are important: the loading and unloading constitutive relation presumed, the positions of the sensors embedded, the interactions between loading waves and unloading waves. For the split Hopkinson pressure bar (SHPB) technique, the assumption of one-dimensional stress wave propagation and the assumption of stress uniformity along the specimen should be satisfied. When the larger diameter bars are employed, the wave dispersion effects should be considered, including the high frequency oscillations, non-uniform stress distribution across the bar section, increase of rise time, and amplitude attenuation. The stress uniformity along the specimen is influenced by the reflection times in specimen, the wave impedance ratio of the specimen and the bar, and the waveform.
文摘Cellulose is a renewable biomass material and natural polymer which is abundantly available on Earth,and includes agricultural wastes,forestry residues,and woody materials.The excellent and smart characteristics of cellulose materials,such as lightweight,biocompatibility,biodegradability,high mechanical strength/stiffness and low thermal expansibility,have made cellulose a highpotential material for various industry applications.Cellulose has recently been discovered as a smart material in the electroactive polymers family which carries the name of cellulose-based electroactive paper(EAPap).The shear piezoelectricity in cellulose polymers is able to induce large displacement output,low actuation voltage,and low power consumption in the application of biomimetic sensors/actuators and electromechanical system.The present study provides an overview of biomass pretreatment from various lignocellulosic cellulose(LC)resources and nanocellulose production via TEMPO-mediated oxidation reaction,followed by the production of different types of EAPap versus its performance,and lastly the applications of EAPap in different areas and industries.Specifically,LC biomass consists mainly of cellulose having a small content of hemicelluloses and lignins which form a defensive inner structure against the degradation of plant cell wall.Thus,selective approaches are discussed to ensure proper extraction of cellulosic fibers from complex biomass for further minimization to nano-dimensions.In addition,a comprehensive review of the development of cellulose-based EAPap as well as fabrication,characterization,performance enhancement and applications of EAPap devices are discussed herein.
基金financially supported by the Science and Technology Department of Guangxi Zhuang Autonomous (No.GuiKeAD21238022)the Natural Science Foundation of Guangxi Province (No.2019GXNSFBA185004)National Natural Science Foundation of China (Nos.52001079,51961005 and 52261038)。
文摘Many MXenes are efficient catalysts for MgH_(2)hydrogen storage material.Nevertheless,the synthesis of MXenes should consume a large amount of corrosive HF to etch out the Al layers from the transition metal aluminum carbides or nitrides(MAX) phases,which is environmentally unfriendly.In this work,Ti_(3)AlCN MAX without HFetching was employed directly to observably enhance the kinetics and the cycling stability of MgH_(2).With addition of10 wt% Ti_(3)AlCN,the onset dehydrogenation temperature of MgH2 was dropped from 320 to 205℃,and the rehydrogenation of MgH2 under 6 MPa H2 began at as low as50℃.Furthermore,at 300℃,it could provide 6.2 wt% of hydrogen in 10 min.Upon cycling,the composite underwent an activation process during the initial 40 cycles,with the reversible capacity increased from 4.7 wt% to 6.5 wt%.After that,the capacity showed almost no attenuation for up to 100 cycles.The enhancing effect of Ti_(3)AICN on MgH_(2) was comparable to many MXenes.It was demonstrated that Ti_(3)AICN did not destabilize MgH_(2) but acted as an efficient catalyst for MgH_(2).Ti_(3)AICN was observed to be the active sites for the nucleation and growth of MgH_(2)and might also help in dissociation and recombination of hydrogen molecules.Such two factors are believed to contribute to the improvement of MgH_(2).This study not only provides a promising strategy for improving the hydrogen storage performances of MgH_(2) by using noncorrosive MAX materials,but also adds evidence of nucleation and growth of MgH_(2) on a catalyst.
基金financially supported by the National Natural Science Foundation of China(Nos.51771171 and 51971199)the Natural Science Foundation of Guangxi Province(Nos.2019GXNSFBA185004 and 2018GXNSFAA281308)the Basic Ability Improvement Project for Young and Middle-Aged Teachers in Colleges and Universities in Guangxi(No.2019KY0021)。
文摘Magnesium hydride(MgH_(2)) is a candidate material for hydrogen storage.MgH_(2)-AlH_(3) composite shows superior hydrogen desorption properties than pure MgH_(2).However,this composite still suffers from poor cycling performance.In this work,NbF_(5) was utilized to improve the cycling properties of the MgH_(2)-AlH_(3) composite.Cycling hydrogen desorption studies show that NbF_(5) significantly improves the cycling stability of MgH_(2)-AlH_(3).The MgH_(2)-AlH_(3)-NbF_(5) composite can release about 2.7 wt% of hydrogen at 300℃ for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than100 cycles.In comparison,the hydrogen desorption capacity of the MgH_(2)-AlH_(3) composite is decreasing with the cycle number increasing.The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles.Brunauer-Emmett-Teller(BET) surface area measurements show that the particle size of MgH_(2)-AlH_(3) composite decreases after cycling,which means pulverization of the composite.NbF_(5) can to some extent suppress the pulverization of the composite during cycling,which partially contributes to the improvement of the cycling hydrogen desorption properties of the material.
基金financially supported by the National Key Basic Research Program of China (No. 2010CB934603)the National Nature Science Foundation of China (Nos. 50931006 and 50971123)
文摘Anisotropic Pr-Fe-B films with soft-magnetic layer (Fe) and/or antiferromagnetic layer (Mn, FeMn or MnO) were prepared by direct-current (DC) magnetron sputtering on Si (100) substrates heated at 650℃. The influence of four types' different structures on the magnetic properties of Pr-Fe-B films was investigated. The phase and magnetic properties were characterized by means of X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). Addition of anti-ferromagnetic layer enhances both the coercivity and the remanence ratios of Pr-Fe-B films with suitable structures. The interface number increases and the antiferromagnetic-ferromagnetic exchange interaction is likely to become stronger, which affect the improvement of magnetic properties. To further understand the influence of structures with soft-magnetic Fe layer and/or antifer- romagnetic FeMn layer on the magnetic properties of Pr-Fe-B hard-magnetic films, the thickness of Pr-Fe-B layer was designed to decrease from 600 to 50 nm. The improvement of magnetic properties becomes obvious in Mo(50 nm)/Pr-Fe-B(25 nm)Mo(2 nm)FeMn(20 nm)Mo (2 nm)Pr-Fe-B(25 nm)/Mo(50 rim) film.
文摘Magnesium(Mg)-based materials are a new generation of alloys with the exclusive ability to be biodegradable within the human/animal body.In addition to biodegradability,their inherent biocompatibility and similar-to-bone density make Mg-based alloys good candidates for fabricating surgical bioimplants for use in orthopedic and traumatology treatments.To this end,nowadays additive manufacturing(AM)along with three-dimensional(3D)printing represents a promising manufacturing technique as it allows for the integration of bioimplant design and manufacturing processes specific to given applications.Meanwhile,this technique also faces many new challenges associated with the properties of Mg-based alloys,including high chemical reactivity,potential for combustion,and low vaporization temperature.In this review article,various AM processes to fabricate biomedical implants from Mg-based alloys,along with their metallic microstructure,mechanical properties,biodegradability,biocompatibility,and antibacterial properties,as well as various post-AM treatments were critically reviewed.Also,the challenges and issues involved in AM processes from the perspectives of bioimplant design,properties,and applications were identified;the possibilities and potential scope of the Mg-based scaffolds/implants are discussed and highlighted.
基金supports of the National Key R&D Program of China(Project No.2017YFA0204403)Hong Kong Themebased Research Scheme Ref.(T13-402/17-N).
文摘Most of the challenges experienced by many engineering materials originate from the surface which later leads to total failure,hence affecting the resultant mechanical properties and service life.However,these challenges have been addressed thanks to the invention of a novel surface mechanical attrition treatment(SMAT)method which protects the material surface by generating a gradient-structured layer with improved strength and hardness without jeopardizing the ductility.The present work provides a comprehensive literature review on the mechanical properties of materials after SMAT including the hardness,tensile strength and elongation,and residual stress.Firstly,a brief introduction on the different forms of surface nanocrystallization is given to get a better understanding of the SMAT process and its advantages over other forms of surface treatments,and then the grain refinement mechanisms of materials by SMAT from the matrix region(base material)to the nanocrystallized layer are explained.The effects of fatigue,fracture,and wear of materials by the enhanced mechanical properties after SMAT are also discussed in detail.In addition,the various applications of SMAT ranging from automotive,photoelectric conversion,biomedical,diffusion,and 3 D-printing of materials are extensively discussed.The prospects and recent research trends in terms of mechanical properties of materials affected by SMAT are then summarized.
文摘Condensed and hydrolysable tannins are non-toxic natural polyphenols that are a commercial commodity industrialized for tanning hides to obtain leather and for a growing number of other industrial applications mainly to substitute petroleum-based products.They are a definite class of sustainable materials of the forestry industry.They have been in operation for hundreds of years to manufacture leather and now for a growing number of applications in a variety of other industries,such as wood adhesives,metal coating,pharmaceutical/medical applications and several others.This review presents the main sources,either already or potentially commercial of this forestry by-materials,their industrial and laboratory extraction systems,their systems of analysis with their advantages and drawbacks,be these methods so simple to even appear primitive but nonetheless of proven effectiveness,or very modern and instrumental.It constitutes a basic but essential summary of what is necessary to know of these sustainable materials.In doing so,the review highlights some of the main challenges that remain to be addressed to deliver the quality and economics of tannin supply necessary to fulfill the industrial production requirements for some materials-based uses.
文摘Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor phase deposition approaches were discussed. Prototype waveguide electro-optic modulators were fabricated using SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers.Promising electro-optic thin film materials including DTPT and PEPCOOH grown from the vapor phase were used for fabrication and test of electro-optic prototype modulators. Finally,the EO coefficient of tens of pm/V was obtained,which can sufficiently support high-speed and small size EO modulators.
文摘In the mouth, biofilm formation occurs on all soft and hard surfaces. Microbial colonization on such surfaces is always preceded by the formation of a pellicle. The physicochemical surface properties of a pellicle are largely dependent on the physical and chemical nature of the underlying surface. Thus, the surface structure and composition of the underlying surface will influence on the initial bacterial adhesion. The aim of this review is to evaluate the influence of the surface roughness and the restorative material composition on the adhesion process of oral bacteria. Both in vitro and in vivo studies underline the importance of both variables in dental plaque formation. Rough surfaces will promote plaque formation and maturation. Candida species are found on acrylic dentures, but dentures coating and soaking of dentures in disinfectant solutions may be an effective method to prevent biofilm formation. Biofilms on gold and amalgam are thick, but with low viability. Glass-ionomer cement collects a thin biofilm with a low viability. Biofilms on composites cause surface deterioration, which enhances biofilm formation. Biofilms on ceramics are thin and highly viable.
基金supported by the National Natural Science Foundation of China (Grant Nos.52261038 and 51861002)the Natural Science Foundation of Guangxi Province (Grant No.2018GXNSFAA294125)+1 种基金the Innovation-driven Development Foundation of Guangxi Province (Grant No.AA17204063)support by the Ministry of Science and Higher Education of the Russian Federation in the framework of the Increase Competitiveness Program of NUST "MISiS" (grant number K2-2020-046)。
文摘Hydrogen is considered one of the most ideal future energy carriers.The safe storage and convenient transportation of hydrogen are key factors for the utilization of hydrogen energy.In the current investigation,two-dimensional vanadium carbide(VC) was prepared by an etching method using V_(4)AlC_(3) as a precursor and then employed to enhance the hydrogen storage properties of MgH_(2).The studied results indicate that VC-doped MgH_(2) can absorb hydrogen at room temperature and release hydrogen at 170℃. Moreover,it absorbs 5.0 wt.%of H_(2) within 9.8 min at 100℃ and desorbs 5.0 wt.% of H_(2) within 3.2 min at 300℃.The dehydrogenation apparent activation energy of VC-doped MgH_(2) is 89.3 ± 2.8 kJ/mol,which is far lower than that of additive-free MgH_(2)(138.5 ± 2.4 kJ/mol),respectively.Ab-initio simulations showed that VC can stretch Mg-H bonds and make the Mg-H bonds easier to break,which is responsible for the decrease of dehydrogenation temperature and conducive to accelerating the diffusion rate of hydrogen atoms,thus,the hydrogen storage properties of MgH_(2) are remarkable improved through addition of VC.
基金National Research Foundation of Korea,Grant/Award Numbers:NRF-2019R1A2C1084836,NRF-2021R1A4A2001403,NRF-2022R1C1C1011484。
文摘Zinc metal anodes(ZMA)have high theoretical capacities(820 mAh g−1 and 5855 mAh cm−3)and redox potential(−0.76 V vs.standard hydrogen electrode),similar to the electrochemical voltage window of the hydrogen evolution reaction(HER)in a mild acidic electrolyte system,facilitating aqueous zinc batteries competitive in next-generation energy storage devices.However,the HER and byproduct formation effectuated by water-splitting deteriorate the electrochemical performance of ZMA,limiting their application.In this study,a key factor in promoting the HER in carbon-based electrode materials(CEMs),which can provide a larger active surface area and guide uniform zinc metal deposition,was investigated using a series of threedimensional structured templating carbon electrodes(3D-TCEs)with different local graphitic orderings,pore structures,and surface properties.The ultramicropores of CEMs are the determining critical factors in initiating HER and clogging active surfaces by Zn(OH)2 byproduct formation,through a systematic comparative study based on the 3D-TCE series samples.When the 3D-TCEs had a proper graphitic structure with few ultramicropores,they showed highly stable cycling performances over 2000 cycles with average Coulombic efficiencies of≥99%.These results suggest that a well-designed CEM can lead to high-performance ZMA in aqueous zinc batteries.
基金This work was supported by the National Natural Science Foundation of China (Grants 11802002, 11772330, and 11372308)the Fundamental Research Funds for the Central Universities (Grant WK2480000003)the Youth Foundation of Anhui University of Technology (Grant RD 17100204).
文摘Cellular material under high-velocity impacthas a typical feature oflayer-wise collapse.A cell-based finite element model is employed to simulate the direct impact of closed-cell foam, and one-dimensional velocity field distributionsareobtained to characterize thecrushing bandpropagating through a cellular material. An explicit expression of continuous velocity distribution is derivedbased on the features of velocity gradient distribution. The velocity distribution function is adopted to determine the dynamic stress-strain statesof cellular materials under dynamic loading.The local stress-strain history distribution reveals that sectional cells experience a process from the precursor of elastic behavior to the shock stress state, through the dynamic initial crushing state. A power-law relation between the dynamic initial crushing stress andthe strainrate isestablished, which confirms the strain-rate effect of cellular materials. By extracting the critical points immediately before the unloading stage on the local dynamic stress-strain history curves, the dynamic stress-strain statesof cellular materials are determined. They exhibit loading rate-dependence but are independent of the initial impact velocity.Furthermore, with the increase of relative density, the dynamic hardening behaviorof cellular specimen is enhanced and the crushing process event is advanced. The particle velocity-based analytical method is appliedto analyze the dynamic responses of cellular materials.This method is better than continuum-based shock models, since itdoes not require a pre-assumed constitutive relation.Therefore,the particle velocity-based analytical method proposed in this study may provide new ideas to carry out dynamic experimental measurement, which is especially applicable toinhomogeneous materials.